• Title/Summary/Keyword: Sila-1H-Indene

Search Result 1, Processing Time 0.015 seconds

Theoretical Studies on the Structure and Aromaticity of 1H-Indene and Mono-sila-1H-Indene (1H-Indene과 Mono-sila-1H-Indene의 구조와 방향족성에 대한 이론적 연구)

  • Ghiasi, Reza;Monnajemi, Majid
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.4
    • /
    • pp.281-290
    • /
    • 2006
  • The electronic structure and properties of the 1H-indene and mono-sila-1H-indene series have been investigated using basis set of 6-31G(d, p) and hybrid density functional theory. Basic measures of aromatic character derived from structure, molecular orbitals, a variety of magnetic criteria (magnetic isotropic and anisotropic susceptibilities) are considered. Energetic criteria suggest that In(Si7) enjoy conspicuous stabilization. However, by magnetic susceptibility isotropic this system are among the least aromatic of the family: Within their isomer series, In(Si4) is the most aromatic using this criteria. Natural bond orbital (NBO) analysis method was performed for the investigation of the relative stability and the nature of the 8-9 bonds in 1H-indene and mono-sila-1H-indene compounds. The results explained that how the p character of natural atomic hybrid orbital on X8 and X9 (central bond) is increased by the substitution of the C8 and C9 by Si. Actually, the results suggested that in these compounds, the X8-X9 bond lengths are closely controlled by the p character of these hybrid orbitals and also by the nature of C-Si bonds. The magnitude of the molecular stabilization energy associated to delocalization from X8-X9 and to * X8-X9 bond orbital were also quantitatively determined. Molecular orbital (MO) analysis further reveal that all structure has three delocalized MOs and two delocalized MOs and therefore exhibit the aromaticity.