• Title/Summary/Keyword: Signed Graph

Search Result 28, Processing Time 0.028 seconds

CAYLEY SIGNED GRAPHS ASSOCIATED WITH ABELIAN GROUPS

  • PRANJALI, PRANJALI;KUMAR, AMIT;YADAV, TANUJA
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.795-805
    • /
    • 2022
  • The aim of author's in this paper is to study the Cayley graph in the realm of signed graph. Moreover, we have characterized generating sets and finite abelian groups that corresponds to balanced Cayley signed graphs. The notion of Cayley signed graph has been demonstrated with the ample number of examples.

SIGNED A-POLYNOMIALS OF GRAPHS AND POINCARÉ POLYNOMIALS OF REAL TORIC MANIFOLDS

  • Seo, Seunghyun;Shin, Heesung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.467-481
    • /
    • 2015
  • Choi and Park introduced an invariant of a finite simple graph, called signed a-number, arising from computing certain topological invariants of some specific kinds of real toric manifolds. They also found the signed a-numbers of path graphs, cycle graphs, complete graphs, and star graphs. We introduce a signed a-polynomial which is a generalization of the signed a-number and gives a-, b-, and c-numbers. The signed a-polynomial of a graph G is related to the $Poincar\acute{e}$ polynomial $P_{M(G)}(z)$, which is the generating function for the Betti numbers of the real toric manifold M(G). We give the generating functions for the signed a-polynomials of not only path graphs, cycle graphs, complete graphs, and star graphs, but also complete bipartite graphs and complete multipartite graphs. As a consequence, we find the Euler characteristic number and the Betti numbers of the real toric manifold M(G) for complete multipartite graphs G.

THE BASES OF PRIMITIVE NON-POWERFUL COMPLETE SIGNED GRAPHS

  • Song, Byung Chul;Kim, Byeong Moon
    • Korean Journal of Mathematics
    • /
    • v.22 no.3
    • /
    • pp.491-500
    • /
    • 2014
  • The base of a signed digraph S is the minimum number k such that for any vertices u, v of S, there is a pair of walks of length k from u to v with different signs. Let K be a signed complete graph of order n, which is a signed digraph obtained by assigning +1 or -1 to each arc of the n-th order complete graph $K_n$ considered as a digraph. In this paper we show that for $n{\geq}3$ the base of a primitive non-powerful signed complete graph K of order n is 2, 3 or 4.

Towards A Dichotomy for the List Switch Homomorphism Problem for Signed Graphs

  • Hyobeen Kim;Mark Siggers
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.3
    • /
    • pp.355-372
    • /
    • 2023
  • We make advances towards a structural characterisation of the signed graphs H for which the list switch H-colouring problem List-S-Hom(H) can be solved in polynomial time. We conjecture two different characterisations, the second refining the first, in the case that the graph H can be switched to a graph in which every negative edge is also positive. Using a recent proof of the first characterisations for reflexive signed graphs, by Bok et. al., we prove the second characterisation for reflexive signed graphs. We also provide several tools for reducing the problem to the bipartite case, and prove a full complexity dichotomy for a related problem.

THE PRIMITIVE BASES OF THE SIGNED CYCLIC GRAPHS

  • Kim, Byeong Moon;Song, Byung Chul
    • Korean Journal of Mathematics
    • /
    • v.21 no.1
    • /
    • pp.55-62
    • /
    • 2013
  • The base $l(S)$ of a signed digraph S is the maximum number $k$ such that for any vertices $u$, $v$ of S, there is a pair of walks of length $k$ from $u$ to $v$ with different signs. A graph can be regarded as a digraph if we consider its edges as two-sided arcs. A signed cyclic graph $\tilde{C_n}$ is a signed digraph obtained from the cycle $C_n$ by giving signs to all arcs. In this paper, we compute the base of a signed cyclic graph $\tilde{C_n}$ when $\tilde{C_n}$ is neither symmetric nor antisymmetric. Combining with previous results, the base of all signed cyclic graphs are obtained.

Signed degree sequences in signed 3-partite graphs

  • Pirzada, S.;Dar, F.A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.2
    • /
    • pp.9-14
    • /
    • 2007
  • A signed 3-partite graph is a 3-partite graph in which each edge is assigned a positive or a negative sign. Let G(U, V, W) be a signed 3-partite graph with $U\;=\;\{u_1,\;u_2,\;{\cdots},\;u_p\},\;V\;=\;\{v_1,\;v_2,\;{\cdots},\;v_q\}\;and\;W\;=\;\{w_1,\;w_2,\;{\cdots},\;w_r\}$. Then, signed degree of $u_i(v_j\;and\;w_k)$ is $sdeg(u_i)\;=\;d_i\;=\;d^+_i\;-\;d^-_i,\;1\;{\leq}\;i\;{\leq}\;p\;(sdeg(v_j)\;=\;e_j\;=\;e^+_j\;-\;e^-_j,\;1\;{\leq}\;j\;{\leq}q$ and $sdeg(w_k)\;=\;f_k\;=\;f^+_k\;-\;f^-_k,\;1\;{\leq}\;k\;{\leq}\;r)$ where $d^+_i(e^+_j\;and\;f^+_k)$ is the number of positive edges incident with $u_i(v_j\;and\;w_k)$ and $d^-_i(e^-_j\;and\;f^-_k)$ is the number of negative edges incident with $u_i(v_j\;and\;w_k)$. The sequences ${\alpha}\;=\;[d_1,\;d_2,\;{\cdots},\;d_p],\;{\beta}\;=\;[e_1,\;e_2,\;{\cdots},\;e_q]$ and ${\gamma}\;=\;[f_1,\;f_2,\;{\cdots},\;f_r]$ are called the signed degree sequences of G(U, V, W). In this paper, we characterize the signed degree sequences of signed 3-partite graphs.

  • PDF

Fast Random Walk with Restart over a Signed Graph (부호 그래프에서의 빠른 랜덤워크 기법)

  • Myung, Jaeseok;Shim, Junho;Suh, Bomil
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.2
    • /
    • pp.155-166
    • /
    • 2015
  • RWR (Random Walk with Restart) is frequently used by many graph-based ranking algorithms, but it does not consider a signed graph where edges may have negative weight values. In this paper, we apply the Balance Theory by F. Heider to RWR over a signed graph and propose a novel RWR, Balanced Random Walk (BRW). We apply the proposed technique into the domain of recommendation system, and show by experiments its effectiveness to filter out the items that users may dislike. In order to provide the reasonable performance of BRW in the domain, we modify the existing Top-k algorithm, BCA, and propose a new algorithm, Bicolor-BCA. The proposed algorithm yet requires employing a threshold. In the experiment, we show how threshold values affect both precision and performance of the algorithm.

ON THE SIGNED TOTAL DOMINATION NUMBER OF GENERALIZED PETERSEN GRAPHS P(n, 2)

  • Li, Wen-Sheng;Xing, Hua-Ming;Sohn, Moo Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.2021-2026
    • /
    • 2013
  • Let G = (V,E) be a graph. A function $f:V{\rightarrow}\{-1,+1\}$ defined on the vertices of G is a signed total dominating function if the sum of its function values over any open neighborhood is at least one. The signed total domination number of G, ${\gamma}^s_t(G)$, is the minimum weight of a signed total dominating function of G. In this paper, we study the signed total domination number of generalized Petersen graphs P(n, 2) and prove that for any integer $n{\geq}6$, ${\gamma}^s_t(P(n,2))=2[\frac{n}{3}]+2t$, where $t{\equiv}n(mod\;3)$ and $0 {\leq}t{\leq}2$.