• Title/Summary/Keyword: Signal-to-noise ratio estimation

Search Result 342, Processing Time 0.024 seconds

A Novel LDPC Decoder with Adaptive Modified Min-Sum Algorithm Based on SNR Estimation (SNR 예측 정보 기반 적응형 Modified UMP-BP LDPC 복호기 설계)

  • Park, Joo-Yul;Cho, Keol;Chung, Ki-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.4
    • /
    • pp.195-200
    • /
    • 2009
  • As 4G mobile communication systems require high transmission rates with reliability, the need for efficient error correcting code is increasing. In this paper, a novel LDPC (Low Density Parity Check) decoder is introduced. The LDPC code is one of the most popular error correcting codes. In order to improve performance of the LDPC decoder, we use SNR (Signal-to-Noise Ratio) estimation results to adjust coefficients of modified UMP-BP (Uniformly Most Probable Belief Propagation) algorithm which is one of widely-used LDPC decoding algorithms. An advantage of Modified UMP-BP is that it is amenable to implement in hardware. We generate the optimal values by simulation for various SNRs and coefficients, and the values are stored in a look-up table. The proposed decoder decides coefficients of the modified UMP-BP based on SNR information. The simulation results show that the BER (Bit Error Rate) performance of the proposed LDPC decoder is better than an LDPC decoder using a conventional modified UMP-BP.

  • PDF

A Post-processing for Binary Mask Estimation Toward Improving Speech Intelligibility in Noise (잡음환경 음성명료도 향상을 위한 이진 마스크 추정 후처리 알고리즘)

  • Kim, Gibak
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.311-318
    • /
    • 2013
  • This paper deals with a noise reduction algorithm which uses the binary masking in the time-frequency domain. To improve speech intelligibility in noise, noise-masked speech is decomposed into time-frequency units and mask "0" is assigned to masker-dominant region removing time-frequency units where noise is dominant compared to speech. In the previous research, Gaussian mixture models were used to classify the speech-dominant region and noise-dominant region which correspond to mask "1" and mask "0", respectively. In each frequency band, data were collected and trained to build the Gaussian mixture models and detection procedure is performed to the test data where each time-frequency unit belongs to speech-dominant region or noise-dominant region. In this paper, we consider the correlation of masks in the frequency domain and propose a post-processing method which exploits the Viterbi algorithm.

Performance Analysis of Two-Way Relay NOMA Systems with Hardware Impairments and Channel Estimation Errors

  • Tian, Xinji;Li, Qianqian;Li, Xingwang;Zhang, Hui;Rabie, Khaled;Cavalcante, Charles Casimiro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5370-5393
    • /
    • 2019
  • In this paper, we consider a two-way relay non-orthogonal multiple access (TWR-NOMA) system with residual hardware impairments (RHIs) and channel estimation errors (CEEs), where two group users exchange their information via the decode-and-forward (DF) relay by using NOMA protocol. To evaluate the performance of the considered system, exact analytical expressions for the outage probability of the two groups users are derived in closed-form. Moreover, the asymptotic outage behavior in the high signal-to-noise ratio (SNR) regime is examined and the diversity order is derived and discussed. Numerical simulation results verify the accuracy of theoretical analyses, and show that: i) RHIs and CEEs have a deleterious effects on the outage probabilities; ii) CEEs have significant effects on the performance of the near user; iii) Due to the RHIs, CEEs, inter-group interference and intra-group interference, there exists error floors for the outage probability.

Approximated Outage Probability for ADF Relay Systems with Burst MPSK and MQAM Symbol Transmission

  • Ko, Kyunbyoung;Lim, Sungmook
    • International Journal of Contents
    • /
    • v.11 no.1
    • /
    • pp.7-14
    • /
    • 2015
  • In this paper, we derive the outage probability for M-ary phase shifting keying (MPSK) and M-ary quadrature amplitude modulation (MQAM) burst transmission (BT) of adaptive decode-and-forward (ADF) cooperative relay systems over quasi-static Rayleigh fading channels. Within a burst, there are pilot symbols and data symbols. Pilot symbols are used for channel estimation schemes and each relay node's transmission mode selection schemes. At first, we focus on ADF relay systems in which the probability density function (PDF) is derived on the basis of error events at relay nodes corresponding to channel estimation errors. Next, the average outage probability is derived as an approximate expression for an arbitrary link signal-to-noise ratio (SNR) for different modulation orders. Its accuracy is demonstrated by comparison with simulation results. Further, it is confirmed that BT-ADF relay systems with pilot symbol based channel estimation schemes enables to select correctly decoded relay nodes without additional signaling between relay nodes and the destination node, and it is verified that the ideal performance is achieved with small SNR loss.

SNR-independent Methods for Estimating Maximum Doppler Frequency (최대 도플러 주파수 추정 시 대역 조절을 통한 부가 잡음의 영향 완화 기법)

  • Yu Hyun-kyu;Park Goo-hyun;Oh Seong-Mok;Kang Chang-eon;Hong Dae-sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.475-480
    • /
    • 2005
  • Information of the maximum Doppler frequency enable to optimize many channel-adaptive techniques and radio resource management methods for mobile radio communication systems. In this paper, we propose two maximum Doppler frequency estimators which are based on the level crossing rate(LCR) and the covariance function (COV). To eliminate the effect of additive noise, we analyze the conditions for the estimators independent of the signal-to-noise ratio(SNR) and implement the conditions with a simple downsampling process. The proposed methods achieve good SNR-independent performance.

Determination and Performance Evaluation of Codevectors Utilizing Phase Difference Distribution Characteristics of Circular Antenna Arrays (원형 안테나 배열의 위상 차이 분포 특성을 활용한 코드벡터 결정 방식 및 성능 평가)

  • Kim, Huiwon;Suh, Junyeub;Sung, Wonjin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.3-9
    • /
    • 2016
  • Current mobile communication systems utilize the multiple-input multiple-output (MIMO) transmission technique as an important means to enhance the bandwidth efficiency. Accurate beamforming via channel estimation contributes to the signal-to-interference-plus-noise ratio (SINR) increase and the system performance improvement when MIMO transmission techniques are employed. Therefore, determination of beamforming vectors as well as the design of appropriate codebooks defining these codevectors play an important role in system operation. In this paper, we statistically analyze the phase difference between the channels corresponding to adjacent antenna elements in order to design an efficient codebook for uniform circular arrays (UCAs). We introduce new parameters which compensate for the additional phase difference observed in its probability density functions (PDFs). The performance of the proposed codebook is tested using the spatial channel model (SCM) to demonstrate its gain over the standard codebooks adopted in the long term evolution (LTE) Releases 8 and 10.

Adaptive Antenna Array for DOA Estimation Utilizing Orthogonal Weight Searching (직교가중치 탐색방법을 이용한 도착방향 추정 적응어레이 안테나)

  • 오정호;최승원;이현배;황영준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.2
    • /
    • pp.116-125
    • /
    • 1997
  • This paper presents a novel method, entitled Orthogonal Weights Searching(OWS), for the Direction-Of-Arrival(DOA) estimation. Utilizing the modified Conjugate Gradient Method(MCGM), the weight vector which is orthogonal to the signal subspace is directly computed from the signal matrix. The proposed method does not require the computation of the eigenvalues and eigenvectors. In addition, the new technique excludes the procedure for the detection of the number of signals under the assumption that the number of weights in the array is greater than the number of input signals. Since the proposed technique can be performed independently of the detection procedure, it shows a good performance in adverse signal environments in which the detection of the number of array inputs cannot be obtained successfully. The performance of the proposed technique is compared with that of the convectional eigen-decomposition method in terms of angle resolution for a given signal-to-noise ratio(SNR) and a required amount of computations.

  • PDF

Development of a Natural Target-based Edge Analysis Method for NIIRS Estimation (NIIRS 추정을 위한 자연표적 기반의 에지분석기법 개발)

  • Kim, Jae-In;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.587-599
    • /
    • 2011
  • As one measure of image interpretability, NIIRS(National Imagery Interpretability Rating Scale) has been used. Unlike MTF(Modulation Transfer Function), SNR(Signal to Noise Ratio), and GSD(Ground Sampling Distance), NIIRS can describe the quality of overall image at user's perspective. NIIRS is observed with human observation directly or estimated by edge analysis. For edge analysis specially manufactured artificial target is used commonly. This target, formed with a tarp of black and white patterns, is deployed on the ground and imaged by the satellite. Due to this, the artificial target-based method needs a big expense and can not be performed often. In this paper, we propose a new edge analysis method that enables to estimate NIIRS accurately. In this method, natural targets available in the image are used and characteristics of the target are considered. For assessment of the algorithm, various experiments were carried out. The results showed that our algorithm can be used as an alternative to the artificial target-based method.

An Adaptive Path Selection Technique Considering Time Difference of Arrival in Multi-hop Relay Systems (다중 홉 릴레이 시스템에서 전파 시간 차이가 고려된 적응적 경로 선택 기법)

  • Woo, Kyung-Soo;Park, Chang-Hwan;Yoo, Hyun-Il;Kim, Jae-Kwon;Han, Seung-Hee;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4A
    • /
    • pp.291-301
    • /
    • 2009
  • In this paper, the effect of ISI(Inter-Symbol Interference) and ICI(Inter-Carrier Interference) due to time difference of arrival on OFDMA-based mobile multi-hop relay (MMR) systems is analyzed. Analyses are performed for the ISI caused by the previous OFDMA symbol transmitted from neighboring macro or relay cell as well as the ISI caused by the next OFDMA symbol transmitted from neighboring macro or relay cell. Then, an effective SINR(Signal to Interference plus Noise Ratio) estimation method and a path selection method considering time difference of arrival are proposed to minimize the effect of ISI and ICI. It is shown by simulation that the performance degradation caused by time difference of arrival can be significantly mitigated when the proposed path selection method is applied to the uplink of OFDMA-based MMR systems.

Performance Analysis of DCMP and ZF based on Spatial Channel Response Estimation by ESPRIT (ESPRIT에 의한 공간 채널응답 추정치에 기초를 둔 방향구속 전력 최소화법과 제로포싱 알고리즘의 성능평가)

  • 정중식;임정빈;안영섭
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.169-174
    • /
    • 2002
  • It has known that the DCMP(Directionally Constrained Minimization of power)and the ZF(Zero Forcing) can improve the SINR performance of an array antenna system by using spatial signature of wireless channel. This paper analyzes performance of DCMP and ZF in multiple scattering environments. To obtain the spatial signature of wireless channel. bothe DOA(Directional of Arrival) and AS(Angular Spread) of the received signals were estimated by using ESPRIT. The performance of the DCMP and the ZF was analyzed theoretically. Through computer simulation, the SINR performance were evaluated.

  • PDF