• Title/Summary/Keyword: Signal representation

Search Result 181, Processing Time 0.031 seconds

A Study on Modern Fake Fashion Based on Simulacre Concept of Baudrillard (보드리야르의 시뮬라크르 개념을 통한 현대 페이크 패션 연구)

  • Kim, Koh Woon;Chun, Jae Hoon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.40 no.4
    • /
    • pp.600-614
    • /
    • 2016
  • This study specifies the definition and characteristics of fake fashion by categorizing cases through an analytical framework that uses the concept of simulacre, which is one of the theories that explains the reproduction of images and symbols in a modern consumer society. The presentation stages of modern fake fashion based on Baudrillard's concept of simulacre are as follows: Stage 1 focuses on the realistic imitation of the original, Stage 2 maintains a similarity with the original while transforming through the distortion of shape or visual perception, Stage 3 is the reality of the original which has become significantly vague and actively involves the designer's creativity, and Stage 4 forms a new value and an independent aura beyond reproducing the original. The presentation techniques of modern fake fashion viewed in the concept of simulacre can be classified into optical illusions by reproduction, use of a fake object, use of unusual shapes, and re-signifying through borrowing. As a result of applying the collected cases to the analytical framework, image reproduction in Stage 1 with imitative nature is a counterfeit that cannot be regarded as fake fashion, and fake fashion in Stage 4 (that can be referred to as simulacre) is fashion with symbolic and multiple meanings with new and creative designs. Modern fake fashion analyzed in the concept of simulacre transforms or reproduces the preexisting original with the purpose of merely creating original designs as well as acts as a new symbolic signal that creates a new aura and sets a trend with a message.

Electromyographic evidence for a gestural-overlap analysis of vowel devoicing in Korean

  • Jun, Sun-A;Beckman, M.;Niimi, Seiji;Tiede, Mark
    • Speech Sciences
    • /
    • v.1
    • /
    • pp.153-200
    • /
    • 1997
  • In languages such as Japanese, it is very common to observe that short peripheral vowel are completely voiceless when surrounded by voiceless consonants. This phenomenon has been known as Montreal French, Shanghai Chinese, Greek, and Korean. Traditionally this phenomenon has been described as a phonological rule that either categorically deletes the vowel or changes the [+voice] feature of the vowel to [-voice]. This analysis was supported by Sawashima (1971) and Hirose (1971)'s observation that there are two distinct EMG patterns for voiced and devoiced vowel in Japanese. Close examination of the phonetic evidence based on acoustic data, however, shows that these phonological characterizations are not tenable (Jun & Beckman 1993, 1994). In this paper, we examined the vowel devoicing phenomenon in Korean using data from ENG fiberscopic and acoustic recorders of 100 sentences produced by one Korean speaker. The results show that there is variability in the 'degree of devoicing' in both acoustic and EMG signals, and in the patterns of glottal closing and opening across different devoiced tokens. There seems to be no categorical difference between devoiced and voiced tokens, for either EMG activity events or glottal patterns. All of these observations support the notion that vowel devoicing in Korean can not be described as the result of the application of a phonological rule. Rather, devoicing seems to be a highly variable 'phonetic' process, a more or less subtle variation in the specification of such phonetic metrics as degree and timing of glottal opening, or of associated subglottal pressure or intra-oral airflow associated with concurrent tone and stricture specifications. Some of token-pair comparisons are amenable to an explanation in terms of gestural overlap and undershoot. However, the effect of gestural timing on vocal fold state seems to be a highly nonlinear function of the interaction among specifications for the relative timing of glottal adduction and abduction gestures, of the amplitudes of the overlapped gestures, of aerodynamic conditions created by concurrent oral tonal gestures, and so on. In summary, to understand devoicing, it will be necessary to examine its effect on phonetic representation of events in many parts of the vocal tracts, and at many stages of the speech chain between the motor intent and the acoustic signal that reaches the hearer's ear.

  • PDF

Investigation of Timbre-related Music Feature Learning using Separated Vocal Signals (분리된 보컬을 활용한 음색기반 음악 특성 탐색 연구)

  • Lee, Seungjin
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.1024-1034
    • /
    • 2019
  • Preference for music is determined by a variety of factors, and identifying characteristics that reflect specific factors is important for music recommendations. In this paper, we propose a method to extract the singing voice related music features reflecting various musical characteristics by using a model learned for singer identification. The model can be trained using a music source containing a background accompaniment, but it may provide degraded singer identification performance. In order to mitigate this problem, this study performs a preliminary work to separate the background accompaniment, and creates a data set composed of separated vocals by using the proven model structure that appeared in SiSEC, Signal Separation and Evaluation Campaign. Finally, we use the separated vocals to discover the singing voice related music features that reflect the singer's voice. We compare the effects of source separation against existing methods that use music source without source separation.

Nonlinear optimal control for reducing vibrations in civil structures using smart devices

  • Contreras-Lopez, Joaquin;Ornelas-Tellez, Fernando;Espinosa-Juarez, Elisa
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.307-318
    • /
    • 2019
  • The frequently excessive vibrations presented in civil structures during seismic events or service conditions may result in users' discomfort, or worst, in structures failure, producing economic and even human casualties. This work contributes in proposing the synthesis of a nonlinear optimal control strategy for semiactive structural control, with the main characteristic that the synthesis considers both the structure model and the semiactive actuator nonlinear dynamics, which produces a nonlinear system that requires a nonlinear controller design. The aim is to reduce the unwanted vibrations in the response of civil structures, by means of intelligent fluid semiactive actuator such as the Magnetorheological Damper (MRD), which is a device with a low level of power consumption. The civil structures for which the proposed control methodology can be applied are those admitting a state-dependent coefficient factorized representation model, such as buildings, bridges, among others. A scaled model of a three storey building is analyzed as a case study, whose dynamical response involves displacement, velocity and acceleration of each one of the storeys, subjected to the North-South component of the September 19th., 2017, Puebla-Morelos (7.1M), Mexico earthquake. The investigation rests on comparing the structural response over time for two different conditions: with no control device installed and with one MRD installed between the first floor and the ground, where a nonlinear optimal signal for the MRD input voltage is determined. Simulation results are presented to show the effectiveness of the proposed controller for reducing the building's dynamical response.

CNN based data anomaly detection using multi-channel imagery for structural health monitoring

  • Shajihan, Shaik Althaf V.;Wang, Shuo;Zhai, Guanghao;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.181-193
    • /
    • 2022
  • Data-driven structural health monitoring (SHM) of civil infrastructure can be used to continuously assess the state of a structure, allowing preemptive safety measures to be carried out. Long-term monitoring of large-scale civil infrastructure often involves data-collection using a network of numerous sensors of various types. Malfunctioning sensors in the network are common, which can disrupt the condition assessment and even lead to false-negative indications of damage. The overwhelming size of the data collected renders manual approaches to ensure data quality intractable. The task of detecting and classifying an anomaly in the raw data is non-trivial. We propose an approach to automate this task, improving upon the previously developed technique of image-based pre-processing on one-dimensional (1D) data by enriching the features of the neural network input data with multiple channels. In particular, feature engineering is employed to convert the measured time histories into a 3-channel image comprised of (i) the time history, (ii) the spectrogram, and (iii) the probability density function representation of the signal. To demonstrate this approach, a CNN model is designed and trained on a dataset consisting of acceleration records of sensors installed on a long-span bridge, with the goal of fault detection and classification. The effect of imbalance in anomaly patterns observed is studied to better account for unseen test cases. The proposed framework achieves high overall accuracy and recall even when tested on an unseen dataset that is much larger than the samples used for training, offering a viable solution for implementation on full-scale structures where limited labeled-training data is available.

Yield monitoring systems for non-grain crops: A review

  • Md Sazzadul Kabir;Md Ashrafuzzaman Gulandaz;Mohammod Ali;Md Nasim Reza;Md Shaha Nur Kabir;Sun-Ok Chung;Kwangmin Han
    • Korean Journal of Agricultural Science
    • /
    • v.51 no.1
    • /
    • pp.63-77
    • /
    • 2024
  • Yield monitoring systems have become integral to precision agriculture, providing insights into the spatial variability of crop yield and playing an important role in modern harvesting technology. This paper aims to review current research trends in yield monitoring systems, specifically designed for non-grain crops, including cabbages, radishes, potatoes, and tomatoes. A systematic literature survey was conducted to evaluate the performance of various monitoring methods for non-grain crop yields. This study also assesses both mass- and volume-based yield monitoring systems to provide precise evaluations of agricultural productivity. Integrating load cell technology enables precise mass flow rate measurements and cumulative weighing, offering an accurate representation of crop yields, and the incorporation of image-based analysis enhances the overall system accuracy by facilitating volumetric flow rate calculations and refined volume estimations. Mass flow methods, including weighing, force impact, and radiometric approaches, have demonstrated impressive results, with some measurement error levels below 5%. Volume flow methods, including paddle wheel and optical methodologies, yielded error levels below 3%. Signal processing and correction measures also play a crucial role in achieving accurate yield estimations. Moreover, the selection of sensing approach, sensor layout, and mounting significantly influence the performance of monitoring systems for specific crops.

Error-Tolerant Music Information Retrieval Method Using Query-by-Humming (허밍 질의를 이용한 오류에 강한 악곡 정보 검색 기법)

  • 정현열;허성필
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.6
    • /
    • pp.488-496
    • /
    • 2004
  • This paper describes a music information retrieval system which uses humming as the key for retrieval Humming is an easy way for the user to input a melody. However, there are several problems with humming that degrade the retrieval of information. One problem is a human factor. Sometimes people do not sing accurately, especially if they are inexperienced or unaccompanied. Another problem arises from signal processing. Therefore, a music information retrieval method should be sufficiently robust to surmount various humming errors and signal processing problems. A retrieval system has to extract pitch from the user's humming. However pitch extraction is not perfect. It often captures half or double pitches. even if the extraction algorithms take the continuity of the pitch into account. Considering these problems. we propose a system that takes multiple pitch candidates into account. In addition to the frequencies of the pitch candidates. the confidence measures obtained from their powers are taken into consideration as well. We also propose the use of an algorithm with three dimensions that is an extension of the conventional DP algorithm, so that multiple pitch candidates can be treated. Moreover in the proposed algorithm. DP paths are changed dynamically to take deltaPitches and IOIratios of input and reference notes into account in order to treat notes being split or unified. We carried out an evaluation experiment to compare the proposed system with a conventional system. From the experiment. the proposed method gave better retrieval performance than the conventional system.

Aberration Retrieval Algorithm of Optical Pickups Using the Extended Nijboer-Zernike Approach (확장된 네이보어-제르니케 방법에 의한 광픽업의 파면수차 복원 알고리즘)

  • Jun, Jae-Chul;Chung, Ki-Soo;Lee, Gun-Kee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.1
    • /
    • pp.32-40
    • /
    • 2010
  • In this work, the method of acquiring the pupil function of optical system is proposed. The wavefront aberration and the intensity distribution of pupil can be analysed with the pupil function. This system can be adopted to the manufacturing line of optical pickup directly and also has good performance to analysing various property of optical instrument. It is one kind of inverse problem to get pupil functions by 3D beam data. The extended Nijboer-Zernike(ENZ) approach recently proposed by Netherlands research group is adopted to accompany to solve these inverse problem. The ENZ approach is one of a aberration retrieval method for which numerous approaches are available. But this approach is new in the sense that it use the highly efficient representation of pupil functions by means of their Zernike coefficients. These coefficients are estimated by using matching procedure in the focal region the theoretical 3D intensity distribution and measured 3D intensity distribution. The algorithm that can be applied more general circumstance such as high-numerical aperture instrument is developed by modifying original ENZ approach. By these scheme, MS windows based GUI program is developed and the good performance is verified with generated 3D beam data.

A Study-on Context-Dependent Acoustic Models to Improve the Performance of the Korea Speech Recognition (한국어 음성인식 성능향상을 위한 문맥의존 음향모델에 관한 연구)

  • 황철준;오세진;김범국;정호열;정현열
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.4
    • /
    • pp.9-15
    • /
    • 2001
  • In this paper we investigate context dependent acoustic models to improve the performance of the Korean speech recognition . The algorithm are using the Korean phonological rules and decision tree, By Successive State Splitting(SSS) algorithm the Hidden Merkov Netwwork(HM-Net) which is an efficient representation of phoneme-context-dependent HMMs, can be generated automatically SSS is powerful technique to design topologies of tied-state HMMs but it doesn't treat unknown contexts in the training phoneme contexts environment adequately In addition it has some problem in the procedure of the contextual domain. In this paper we adopt a new state-clustering algorithm of SSS, called Phonetic Decision Tree-based SSS (PDT-SSS) which includes contexts splits based on the Korean phonological rules. This method combines advantages of both the decision tree clustering and SSS, and can generated highly accurate HM-Net that can express any contexts To verify the effectiveness of the adopted methods. the experiments are carried out using KLE 452 word database and YNU 200 sentence database. Through the Korean phoneme word and sentence recognition experiments. we proved that the new state-clustering algorithm produce better phoneme, word and continuous speech recognition accuracy than the conventional HMMs.

  • PDF

Evaluation and Intercomparisons of the Estimated TOVS Precipitable Waters for the Tropical Plume (Tropical Plume 에 대한 TOVS 추정 가강수량의 평가와 상호비교)

  • 정효상;신동인
    • Korean Journal of Remote Sensing
    • /
    • v.9 no.2
    • /
    • pp.51-69
    • /
    • 1993
  • Precipitable Water(PW) are retrieved over the tropical and subtropical Pacific Ocean from TOVS infrared and microwave channel brightness temperature and OLR observations by means of stepwise linear regression. The retrieved TOVS PW fields generated by PW$_{sfc}$(71.1 % of the variance and 0.62 g cm$^{-2}$ standard error over the surface) and PW$_{700500}$(71.7 % and 0.17 g cm$^{-2}$ over the 700 - 500 hPa layer) revealed more evolving synoptic signals over the tropical and subtropical Pacific Ocean. The PW$_{sfc}$ dose not show significantly the TP feature because of the representation of the lower PW for high-level clouds not associated with deep convection. There exists some elusion to trace the TP on the PW$_{sfc}$ field if any supplementary information does not provide. But ECMWF analysis has a general tendency of drying the subtropics and moistening the ITCZ (InterTropical Convergence Zone) and SPCZ(South Pacific Convergence Zone). However, although ECMWF analysis is fairly successful in capturing mean patterms, it is unsuccessful in following active synoptic signal like a tropical plume. Similarly, SMMR-PW does not represent the TP well which consists of the highand middle-level clouds, but PW$_{sfc}$ shows underestimated moistness of TP and does not depict significant signal of TP. In the PW field derived from microwave observations, the TP can not be recognized well. Furthermore, the signature of PW$_{sfc}$ was different from OLR for the TP, which implies the presence of high- and middle-layer thin clouds, but in a closer agreement for deep and active convection areas which contain thick middle- and lower-layer clouds; though OLR represented the cloudiness in the tropics well. In synoptically active regions, it differed from OLR analysis, primarily bacause of actual differences in water vapor and cloud features. The signature of PW$_{sfc}$ was different from OLR for the TP.