• Title/Summary/Keyword: Signal enhancement

Search Result 882, Processing Time 0.024 seconds

Clinicoradiologic Characteristics of Intradural Extramedullary Conventional Spinal Ependymoma (경막내 척수외 뇌실막세포종의 임상 영상의학적 특징)

  • Seung Hyun Lee;Yoon Jin Cha;Yong Eun Cho;Mina Park;Bio Joo;Sang Hyun Suh;Sung Jun Ahn
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.5
    • /
    • pp.1066-1079
    • /
    • 2023
  • Purpose Distinguishing intradural extramedullary (IDEM) spinal ependymoma from myxopapillary ependymoma is challenging due to the location of IDEM spinal ependymoma. This study aimed to investigate the utility of clinical and MR imaging features for differentiating between IDEM spinal and myxopapillary ependymomas. Materials and Methods We compared tumor size, longitudinal/axial location, enhancement degree/pattern, tumor margin, signal intensity (SI) of the tumor on T2-weighted images and T1-weighted image (T1WI), increased cerebrospinal fluid (CSF) SI caudal to the tumor on T1WI, and CSF dissemination of pathologically confirmed 12 IDEM spinal and 10 myxopapillary ependymomas. Furthermore, classification and regression tree (CART) was performed to identify the clinical and MR features for differentiating between IDEM spinal and myxopapillary ependymomas. Results Patients with IDEM spinal ependymomas were older than those with myxopapillary ependymomas (48 years vs. 29.5 years, p < 0.05). A high SI of the tumor on T1W1 was more frequently observed in IDEM spinal ependymomas than in myxopapillary ependymomas (p = 0.02). Conversely, myxopapillary ependymomas show CSF dissemination. Increased CSF SI caudal to the tumor on T1WI was observed more frequently in myxopapillary ependymomas than in IDEM spinal ependymomas (p < 0.05). Dissemination to the CSF space and increased CSF SI caudal to the tumor on T1WI were the most important variables in CART analysis. Conclusion Clinical and radiological variables may help differentiate between IDEM spinal and myxopapillary ependymomas.

[ $Gd(DTPA)^{2-}$ ]-enhanced, and Quantitative MR Imaging in Articular Cartilage (관절연골의 $Gd(DTPA)^{2-}$-조영증강 및 정량적 자기공명영상에 대한 실험적 연구)

  • Eun Choong-Ki;Lee Yeong-Joon;Park Auh-Whan;Park Yeong-Mi;Bae Jae-Ik;Ryu Ji Hwa;Baik Dae-Il;Jung Soo-Jin;Lee Seon-Joo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.2
    • /
    • pp.100-108
    • /
    • 2004
  • Purpose : Early degeneration of articular cartilage is accompanied by a loss of glycosaminoglycan (GAG) and the consequent change of the integrity. The purpose of this study was to biochemically quantify the loss of GAG, and to evaluate the $Gd(DTPA)^{2-}$-enhanced, and T1, T2, rho relaxation map for detection of the early degeneration of cartilage. Materials and Methods : A cartilage-bone block in size of $8mm\;\times\;10mm$ was acquired from the patella in each of three pigs. Quantitative analysis of GAG of cartilage was performed at spectrophotometry by use of dimethylmethylene blue. Each of cartilage blocks was cultured in one of three different media: two different culture media (0.2 mg/ml trypsin solution, 1mM Gd $(DTPA)^{2-}$ mixed trypsin solution) and the control media (phosphate buffered saline (PBS)). The cartilage blocks were cultured for 5 hrs, during which MR images of the blocks were obtained at one hour interval (0 hr, 1 hr, 2 hr, 3 hr, 4 hr, 5 hr). And then, additional culture was done for 24 hrs and 48 hrs. Both T1-weighted image (TR/TE, 450/22 ms), and mixed-echo sequence (TR/TE, 760/21-168ms; 8 echoes) were obtained at all times using field of view 50 mm, slice thickness 2 mm, and matrix $256\times512$. The MRI data were analyzed with pixel-by-pixel comparisons. The cultured cartilage-bone blocks were microscopically observed using hematoxylin & eosin, toluidine blue, alcian blue, and trichrome stains. Results : At quantitation analysis, GAG concentration in the culture solutions was proportional to the culture durations. The T1-signal of the cartilage-bone block cultured in the $Gd(DTPA)^{2-}$ mixed solution was significantly higher ($42\%$ in average, p<0.05) than that of the cartilage-bone block cultured in the trypsin solution alone. The T1, T2, rho relaxation times of cultured tissue were not significantly correlated with culture duration (p>0.05). However the focal increase in T1 relaxation time at superficial and transitional layers of cartilage was seen in $Gd(DTPA)^{2-}$ mixed culture. Toluidine blue and alcian blue stains revealed multiple defects in whole thickness of the cartilage cultured in trypsin media. Conclusion : The quantitative analysis showed gradual loss of GAG proportional to the culture duration. Microimagings of cartilage with $Gd(DTPA)^{2-}$-enhancement, relaxation maps were available by pixel size of $97.9\times195\;{\mu}m$. Loss of GAG over time better demonstrated with $Gd(DTPA)^{2-}$-enhanced images than with T1, T2, rho relaxation maps. Therefore $Gd(DTPA)^{2-}$-enhanced T1-weighted image is superior for detection of early degeneration of cartilage.

  • PDF