• Title/Summary/Keyword: Signal Waveform

Search Result 560, Processing Time 0.026 seconds

Maximum Power Waveform Design for Bistatic MIMO Radar System

  • Shin, Hyuksoo;Yeo, Kwang-Goo;Yang, Hoongee;Chung, Youngseek;Kim, Jongman;Chung, Wonzoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.4
    • /
    • pp.167-172
    • /
    • 2014
  • In this paper we propose a waveform design algorithm that localizes the maximum output power in the target direction. We extend existing monostatic radar optimal waveform design schemes to bistatic multiple-input multiple-output (MIMO) radar systems. The algorithm simultaneously calculates the direction of departure (DoD) and the direction of arrival (DoA) using a two-dimensional multiple signal classification (MUSIC) method, and successfully localizes the maximum transmitted power to the target locations by exploiting the calculated DoD. The simulation results confirm the performance of the proposed algorithm.

A Study on the Interface Circuit Creation Algorithm using the Flow Chart (흐름도를 이용한 인터페이스 회로 생성 알고리즘에 관한 연구)

  • 우경환;이천희
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.1
    • /
    • pp.25-34
    • /
    • 2001
  • In this paper, we describe the generation method of interface logic which replace between IP & IP handshaking signal with asynchronous logic circuit. Especially, we suggest the new asynchronous sequential "Waveform to VHDL" code creation algorithm by flow chart conversion : Wave2VHDL - if only mixed asynchronous timing waveform is presented the level type input and pulse type input for handshaking, we convert waveform to flowchart and then replace with VHDL code according to converted flowchart. Also, we confirmed that asynchronous electronic circuits are created by applying extracted VHDL source code from suggest algorithm to conventional domestic/abroad CAD Tool, Finally, we assured the simulation result and the suggest timing diagram are identical.

  • PDF

On a Pitch Alteration Method Compensated with the Spectrum for High Quality Speech Synthesis (스펙트럼 보상된 고음질 합성용 피치 변경법)

  • 문효정
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.123-126
    • /
    • 1995
  • The waveform coding are concerned with simply preserving the wave shape of speech signal through a redundancy reduction process. In the case of speech synthesis, the wave form coding with high quality are mainly used to the synthesis by analysis. However, because the parameters of this coding are not classified as either excitation and vocal tract parameters, it is difficult to applying the waveform coding to the synthesis by rule. In this paper, we proposed a new pitch alteration method that can change the pitch period in waveform coding by using scaling the time-axis and compensating the spectrum. This is a time-frequency domain method that is preserved in the phase components of the waveform and that has a little spectrum distortion with 2.5% and less for 50% pitch change.

  • PDF

Half-Cycle-Waveform-Inversed Single-Carrier Seven-level Sinusoidal Modulation

  • Wu, Fengjiang;Sun, Bo;Zhang, Lujie;Sun, Li
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.86-93
    • /
    • 2013
  • A half-cycle-waveform inversion based three reference modulations seven-level SPWM (TRM-SPWM) scheme with one carrier is proposed in this paper. To keep the same comparison logics for the modulations and carrier during the negative half cycle and the positive one for the modulations, in the negative half cycle of the modulations, the DC offsets related to the amplitude of the carrier are set on the three modulations, respectively. The seven-level SPWM waveform with dead time thereby is implemented with only one Digital Signal Processor (DSP) without any other attached logic circuit. The basis principle of the proposed TRM-SPWM is analyzed in detail, and the frequency spectrums of the conventional and the proposed schemes are derived and compared with each other through simulation. The DSP based implementation is presented and detailed experimental waveforms verify the accuracy and feasibility of the proposed TRM-SPWM scheme.

Signal Processing Techniques for Recovering Input Waveforms in Dispersive Lamb Wave Propagation (분산성 램파의 전파에서 입력 파형의 복원을 위한 신호처리)

  • Jeong, Hyunjo;Cho, Sungjong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.694-695
    • /
    • 2013
  • An experimental study has been made with the use of time reversal concepts to recover the input waveform in a long range propagation of dispersive Lamb waves. Three techniques have been tested: Regular TR, 1 bit TR and Inverse filter (IF). The IF approach was found to completely recover the original input signal. Moreover, the IF technique significantly increases the contrast, i.e., the ratio of the recovered signal and the sideband signal.

  • PDF

A Simple Pitch Tracking Algorithm based on the Energy Operator (에너지 연산자에 기초한 간단한 피치 추적 방법)

  • Tai-Ho Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 2004
  • A new method for the estimation of pitch-frequency contour of voiced speech is presented. The method is based on the double application of Kaiser's energy operator[1], which has the capabilities of extracting amplitude and frequency of a sinusoidal waveform. According to the modulation model, a vowel can be represented by a combination of damped sinusoids representing formants, modulated by pitch pulses. Therefore, the amplitude envelope of each of the components will give a pitch-like waveform and the pitch can be obtained by averaging the frequencies of this waveform. The first part is the same as Gopalan's approach[9], but by substituting the LPC based spectral analysis with the second application of energy operator, the algorithm becomes very simple and can be processed on-line. Although the estimation is rather coarse, the suggested algorithm can be useful for getting a general sketch of pitch contour on-line.

  • PDF

Electric Leakage Point Detection System of Underground Power Cable Using Half-period Modulated Transmission Waveform and Earth Electric Potential Measurement (반주기 변조된 송신파형과 대지전위 측정을 이용한 지중 케이블 누전 고장점 탐지 시스템)

  • Jeon, Jeong Chay;Yoo, Jae-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2113-2118
    • /
    • 2016
  • The precise detection of electric leakage point of underground power cable is very important to reduce cost and time of maintenance and prevent electric shock accident through expedite repair of electric leakage point. This paper proposes a electric leakage point detection system underground power cable using of half-period modulated transmission waveform and earth electric potential measurement. The developed system is composed of transmitter to generate the wanted pulse waveform, receiver to measure and display earth electric potential by the transmitted pulse in electric leakage point and PC Software program to display of GPS coordinate on detection cable line. The performance of the electric leakage point detection system was tested in the constructed underground cable leakage detection test bed. The test results on signal generation voltage precision of signal transmitter, mean detection earth voltage, mean detection leakage current and electric leakage point detection error showed the developed system can be used in electric leakage point detection underground power cable.

Additional degree of freedom in phased-MIMO radar signal design using space-time codes

  • Vahdani, Roholah;Bizaki, Hossein Khaleghi;Joshaghani, Mohsen Fallah
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.640-649
    • /
    • 2021
  • In this paper, an additional degree of freedom in phased multi-input multi-output (phased-MIMO) radar with any arbitrary desired covariance matrix is proposed using space-time codes. By using the proposed method, any desired transmit covariance matrix in MIMO radar (phased-MIMO radars) can be realized by employing fully correlated base waveforms such as phased-array radars and simply extending them to different time slots with predesigned phases and amplitudes. In the proposed method, the transmit covariance matrix depends on the base waveform and space-time codes. For simplicity, a base waveform can be selected arbitrarily (ie, all base waveforms can be fully correlated, similar to phased-array radars). Therefore, any desired covariance matrix can be achieved by using a very simple phased-array structure and space-time code in the transmitter. The main advantage of the proposed scheme is that it does not require diverse uncorrelated waveforms. This considerably reduces transmitter hardware and software complexity and cost. One the receiver side, multiple signals can be analyzed jointly in the time and space domains to improve the signal-to-interference-plus-noise ratio.

An Analysis Technique of Ultrasonic Pulse Signal for Measuring Ship's Draught (선박의 홀수 측정을 위한 초음파 펄스 신호의 해석기법)

  • 이은방;이상집
    • Journal of the Korean Institute of Navigation
    • /
    • v.19 no.4
    • /
    • pp.1-8
    • /
    • 1995
  • Although ship's draught information onboard is substantial for both the safety of navigation and the estimation of loaded cargoes, its accuracy depends, in conventional surveying method, on the skillfulness of observers and the condition of the sea surface round the vessel. To obtain more accurate information accessibly, measuring instruments with sophisticated sensors such as mechanical, electronic and ultrasonic transducers have been developed. However, they have still limitation in accuracy and in making up a system due to the complexity of processing signal. In this paper, we propose a new technique for analyzing ultrasonic pulse signal, in order to improve the measurement accuracy and simplify a remote sensing system of draught by ultrasonic waves. In this technique, pulse signal is translated into phase curve which is composed of the phase value defined in time domain. Then, the time interval between two signals different in waveform, is waveform, is analytically determined by calculating average time difference on phase curves. Also, analytical procedure can be carried out in real time with the successive five data sampled at T/4, for high speed digital processing with computer and A/D converter. This technique is useful for measuring draught under the influence of sea condition and for interfacing its data briefly to the integrated bridge system.

  • PDF

Deep Learning Model on Gravitational Waves of Merger and Ringdown in Coalescence of Binary Black Holes

  • Lee, Joongoo;Cho, Gihyuk;Kim, Kyungmin;Oh, Sang Hoon;Oh, John J.;Son, Edwin J.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.46.2-46.2
    • /
    • 2019
  • We propose a deep learning model that can generate a waveform of coalescing binary black holes in merging and ring-down phases in less than one second with a graphics processing unit (GPU) as an approximant of gravitational waveforms. Up to date, numerical relativity has been accepted as the most adequate tool for the accurate prediction of merger phase of waveform, but it is known that it typically requires huge amount of computational costs. We present our method can generate the waveform with ~98% matching to that of the status-of-the-art waveform approximant, effective-one-body model calibrated to numerical relativity simulation and the time for the generation of ~1500 waveforms takes O(1) seconds. The validity of our model is also tested through the recovery of signal-to-noise ratio and the recovery of waveform parameters by injecting the generated waveforms into a public open noise data produced by LIGO. Our model is readily extendable to incorporate additional physics such as higher harmonics modes of the ring-down phase and eccentric encounters, since it only requires sufficient number of training data from numerical relativity simulations.

  • PDF