• Title/Summary/Keyword: Signal Process

Search Result 3,489, Processing Time 0.026 seconds

A study on monitoring for process time and process properties by measuring vibration signals transmitted to the mold during injection molding (사출성형공정에서 금형에 전달되는 진동 신호 측정을 이용한 성형 단계별 공정시간과 공정특성의 모니터링에 대한 연구)

  • Lee, Jun-han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.8-16
    • /
    • 2020
  • In this study, the vibration signal of the mold was measured and analyzed to monitoring the process time and characteristics during injection molding. A 5 inch light guide plate mold was used to injection molding and the vibration signal was measured by MPU6050 acceleration sensor module attached the surface of fixed mold base. Conditions except for injection speed and packing pressure were set to the same value and the change of the vibration signal of the mold according to injection speed and packing pressure was analyzed. As a result, the vibration signal had a large change at three points: "Injection start", "V/P switchover", and "Packing end". The time difference between "injection start" and "V/P switchover" means the injection time in the injection molding process, and the time difference between "V/P switchover" and "Packing end" means the packing time. When the injection time and packing time obtained from the vibration signal of the mold are compared with the time recorded in the injection molding machine, the error of the injection time was 2.19±0.69% and the error of the packing time was 1.39±0.83%, which was the same level as the actual value. Additionally, the amplitude at the time of "injection start" increased as the injection speed increased. In "V/P switchover", the amplitude tended to be proportional to the pressure difference between the maximum injection pressure and the packing pressure and the amplitude at the "packing end" tended to the pressure difference between the packing pressure and the back pressure. Therefore, based on the result of this study, the injection time and packing time of each cycle can be monitored by measuring the vibration signal of the mold. Also, it was confirmed that the level and trend of process variables such as the injection speed, maximum injection pressure, and packing pressure can be evaluated as the change of the mold vibration during injection molding.

A Study on the Correction Processing for the Signal of the Space Charge Distribution in Polymer Insulating Materials Measured by PEA Method (펄스정전응력법(PEA)을 이용하여 측정한 고분자 절연재료 내에서의 공간전하분포 신호에 대한 보정 처리 연구)

  • Min, Woomin;Kang, Jongmin;Kim, HyungGyu;Park, JunDo;Hwangbo, Seung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.860-864
    • /
    • 2018
  • The signal of space charge distribution measured in polymer insulating materials by the PEA has some noises due to the system circuits and the ringing phenomena in the sensor of PVDF and so on forth. It's magnitude mainly depends on the thickness of the insulation material, and it is also affected by the attenuation and dispersion when traveling in a dielectric material. In order to make it reliable, the correcting process for the signal is essential. In this study, we proposed the new deconvolution process on the measured signal of space charge distribution in the flat XLPE insulator, and developed a new signal processing algorithm. Using this, we could improve the reliability of the measured signal much and analyze the effects of space charge clearly in materials.

A Study on the Detection of Chatter Vibration using Cutting Force Measurement (절삭력을 이용한 채터의 감지에 관한 연구)

  • 윤재웅
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.150-159
    • /
    • 2000
  • In-process diagnosis of the cutting state is essential for the automation of manufacturing systems. Especially when the cutting process becomes unstable it induces self-exited vibrations a frequent case of poor tool life rough surface finish damage to the workpiece and the machine tool itself and excessive down time. To ensure that the cutting process main-tains stable it is highly desirable to have the capability of real-time. To ensure that the cutting process main-tains stable it is highly desirable to have the capability of real-time monitoring and controlling chatter. This paper describes the detection method of chatter vibration using cutting force in turning process. In order to detect a chatter vibra-tion the dynamic fluctuation of radial force is analyzed since this components is sensitive to the chatter. The envelope sig-nal of radial force has been calculated by the use of FIR Hilbert transformer and it was useful to classify the chatter signal from the dynamically unstable circumstances. It was found that the mode and the mode width were closely correlated with the chatter amplitude was well. Finally back propagation(BP) neural network have been applied to the pattern recognition for the classification of chatter signal in various cutting conditions. The validity of this systed was confirmed by the experiments under the various cutting conditions.

  • PDF

Design of a 3GPP LTE system Information(MIB) detection simulator (3GPP LTE 시스템정보(MIB) 추출에 대한 연구)

  • Gwag, Gyoung-Hun;Oh, Hyuk-Jun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.827-829
    • /
    • 2015
  • This paper presents process of the UE obtains the cell system information in order to achieve communication with the LTE network on the LTE. This paper deals with the process of extracting MIB(Master Information Block) cell system information in LTE. To study the 3GPP LTE standard spec series 36.200 and 36.300, the simulation is implemented to extract the MIB in MATLAB program. The simulation process is divided into three parts. It consisted of a part that extracts the PSS, SSS and MIB. Called a cell search process for detecting the PSS and SSS, the process is to be done in order to extract only the cell system information. The simulation program is verified based on the signal captured from the real Air.

  • PDF

Cumulative Sum Control Charts for Simultaneously Monitoring Means and Variances of Multiple Quality Variables

  • Chang, Duk-Joon;Heo, Sunyeong
    • Journal of Integrative Natural Science
    • /
    • v.5 no.4
    • /
    • pp.246-252
    • /
    • 2012
  • Multivariate cumulative sum (CUSUM) control charts for simultaneously monitoring both means and variances under multivariate normal process are investigated. Performances of multivariate CUSUM schemes are evaluated for matched fixed sampling interval (FSI) and variable sampling interval (VSI) features in terms of average time to signal (ATS), average number of samples to signal (ANSS). Multivariate Shewhart charts are also considered to compare the properties of multivariate CUSUM charts. Numerical results show that presented CUSUM charts are more efficient than the corresponding Shewhart chart for small or moderate shifts and VSI feature with two sampling intervals is more efficient than FSI feature. When small changes in the production process have occurred, CUSUM chart with small reference values will be recommended in terms of the time to signal.

A Low Power Multi Level Oscillator Fabricated in $0.35{\mu}m$ Standard CMOS Process ($0.35{\mu}m$ 표준 CMOS 공정에서 제작된 저전력 다중 발진기)

  • Chai Yong-Yoong;Yoon Kwang-Yeol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.8
    • /
    • pp.399-403
    • /
    • 2006
  • An accurate constant output voltage provided by the analog memory cell may be used by the low power oscillator to generate an accurate low frequency output signal. This accurate low frequency output signal may be used to maintain long-term timing accuracy in host devices during sleep modes of operation when an external crystal is not available to provide a clock signal. Further, incorporation of the analog memory cell in the low power oscillator is fully implementable in a 0.35um Samsung standard CMOS process. Therefore, the analog memory cell incorporated into the low power oscillator avoids the previous problems in a oscillator by providing a temperature-stable, low power consumption, size-efficient method for generating an accurate reference clock signal that can be used to support long sleep mode operation.

A Study on Damage Detection of Cutting Tool Using Neural Network and Cutting Force Signal (신경망과 절삭력신호 특성을 이용한 공구이상상태 감지에 관한 연구)

  • Lim, K.Y.;Mun, S.D.;Kim, S.I.;Kim, T.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.48-55
    • /
    • 1997
  • A useful method to detect tool breakage suing neural network of cutting force signal is porposed and implemented in a basic cutting process. Cutting signal is gathered by tool dynamometer and normalized as a preprocessing. The cutting force signal level is continually monitored and compared with the predefined level. The neural network has been trained normalized sample data of the normal operation and cata-strophic tool failure using backpropagation learning process. The develop[ed system is verified to be very effective in real-time usage with minor modification in conventional cutting processes.

  • PDF

Time Reversa1 Reconstruction of Ultrasonic Waves in Anisotropic Media

  • Jeong, Hyun-Jo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.1
    • /
    • pp.54-58
    • /
    • 2008
  • Time reversal (TR) of body waves in fluids and isotropic solids has been used in many applications including ultrasonic NDE. However, the study of the TR method for anisotropic materials is not well established. In this paper, the full reconstruction of the input signal is investigated for anisotropic media using an analytical formulation, called a modular Gaussian beam (MGB) model. The time reversal operation of this model in the frequency domain is done by taking the complex conjugate of the Gaussian amplitude and phase received at the TR mirror position. A narrowband reference signal having a particular frequency and number of cycles is then multiplied and the whole signal is inverse Fourier transformed. The original input signal is seen to be fully restored by the TR process of MGB model and this model can be more generalized to simulate the spatial and temporal focusing effects due to TR process in anisotropic materials.

A Study on On-Line Quality Monitoring Using Arc Light in Gas Metal Arc Welding (GMAW에서 아크 빛을 이용한 실시간 용접품질 모니터링에 관한 연구)

  • 조택동;양상민
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.82-86
    • /
    • 2000
  • Gas metal arc welding(GMAW) is regarded as one of the best candidate for welding automation in industrial joining application. It is important to monitor the weld quality for the high performance weld automation. In GMAW, weld quality is closely related to arc stability especially. In this paper, arc light signal is measured and spectrum analyzed to the detect the variation of the weld quality. The FFT of the signal showed that the amplitude variance of FFT power spectrum was very large in poor weld process such as the decrease of weld bead width and height. The results show that it is possible to detect the weld defect position in weld process.

  • PDF

Estimation of the Process Variable for Nuclear Power Plants Using the Parity Space Method and the Neural Network (패리티공간기법과 신경회로망을 이용한 원전 공정변수 추정)

  • 오성헌;김대일;김건중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1169-1177
    • /
    • 1994
  • The function estimation characteristics of neural networks can be used sensor signal estimation of the nuclear power plants. In case of applying the neural network to the signal estimation of redundant sensors, it is an important problem that the redundant sensor signals used as the input signals of neural network should be validated. In this paper, we simplify the conventional parity space method in order to input the validated signal to the neural network and lso propose the sensor signal validation method, which estimates the reliable sensor output combining the neural network with the simplified parity space method. The acceptability of the proposed process variable estimation method is demonstrated by using the simulation data in safety injection accident of the nuclear power plant.