• Title/Summary/Keyword: Signal Power to Interference plus Noise Power Ratio

Search Result 67, Processing Time 0.029 seconds

A Bi-Target Based Mobile Relay Selection Algorithm for MCNs

  • Dai, Huijun;Gui, Xiaolin;Dai, Zhaosheng;Ren, Dewang;Gu, Yingjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5282-5300
    • /
    • 2017
  • Multi-hop cellular networks (MCNs) reduce the transmit power and improve the system performance. Recently, several research studies have been conducted on MCNs. The mobile relay selection scheme is a rising issue in the design of MCNs that achieves these advantages. The conventional opportunistic relaying (OR) is performed on the single factor for maximum signal-to-interference-plus-noise ratio (SINR). In this paper, a comprehensive OR scheme based on Bi-Target is proposed to improve the system throughput and reduce the relay handover by constraining the amount of required bandwidth and SINR. Moreover, the proposed algorithm captures the variability and the mobility that makes it more suitable for dynamic real scenarios. Numerical and simulation results show the superiority of the proposed algorithm in both enhancing the overall performance and reducing the handover.

Multi-Tag Beamforming Scheme Based on Backscatter Communication for RF Energy Harvesting Networks (RF 에너지 하베스팅 네트워크를 위한 Backscatter 통신 기반의 다중 태그 빔포밍 기법)

  • Hong, Seung Gwan;Hwang, Yu Min;Lee, Sun Yui;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.2
    • /
    • pp.60-64
    • /
    • 2016
  • In this paper, we propose a scheme for MIMO beamforming for the backscatter communication using a multi-tag to improve the efficiency of energy harvesting and the BER of received signals. We obtain a normal channel information through a communication between the H-AP and multi-tag. The H-AP sets parameters for the transmission scenario of the spatial channel model (SCM) using the obtained channel information and generates a SCM channel information. Then, the H-AP transmits signals that have optimal transmission power to increase the signal-to-interference-plus-noise ratio (SINR) to each of tags. Tags perform a backscatter communication with signals. The receiver performs a time switching technique of energy harvesting using backscatter signals from the multi-tag. Simulation results demonstrate effectiveness of the proposed scheme, and the harvesting efficiency and BER at the receiver is greatly improved.

Asymptotic Performance of MIMO-MC-CDMA Systems in Multi-cell Environments (다중셀 환경에서 MIMO-MC-CDMA시스템의 점근적 성능)

  • Kim, Kyeong-Yeon;Ham, Jae-Sang;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.47-52
    • /
    • 2007
  • This paper analyzes the output signal-to-interference-plus-noise ratio (SINR) for a multiple-input-multiple-output (MIMO) multicarrier code division multiple access (MC-CDMA) system with minium mean square error receivers in multi-cell environments. A previous work in single cell environments is extended into analysis in multi-cell environments. The use of Haar unitary code matrix for asymptotic analysis causes other cell interferences expressed with a diagonal matrix haying different diagonal values. This paper shows that other cell interferences converge to an identity matrix whose gain is expressed by only other cell interference power in mean square sense and finds asymptotic deterministic SINRs for a given other cell interference. Under the assumption that the sum of lognormal fading components is distributed by other lognormal function, we show the comparison between theoretical performances and simulations from the view point of bit error rate and present average throughput performance according to the cell radius.

Study on CGM-LMS Hybrid Based Adaptive Beam Forming Algorithm for CDMA Uplink Channel (CDMA 상향채널용 CGM-LMS 접목 적응빔형성 알고리듬에 관한 연구)

  • Hong, Young-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.895-904
    • /
    • 2007
  • This paper proposes a robust sub-optimal smart antenna in Code Division Multiple Access (CDMA) basestation. It makes use of the property of the Least Mean Square (LMS) algorithm and the Conjugate Gradient Method (CGM) algorithm for beamforming processes. The weight update takes place at symbol level which follows the PN correlators of receiver module under the assumption that the post correlation desired signal power is far larger than the power of each of the interfering signals. The proposed algorithm is simple and has as low computational load as five times of the number of antenna elements(O(5N)) as a whole per each snapshot. The output Signal to Interference plus Noise Ratio (SINR) of the proposed smart antenna system when the weight vector reaches the steady state has been examined. It has been observed in computer simulations that proposed beamforming algorithm improves the SINR significantly compared to the single antenna case. The convergence property of the weight vector has also been investigated to show that the proposed hybrid algorithm performs better than CGM and LMS during the initial stage of the weight update iteration. The Bit Error Rate (BER) characteristics of the proposed array has also been shown as the processor input Signal to Noise Ratio (SNR) varies.

Joint Transmitter and Receiver Design Based on SPPLNR for Multi-user MIMO Channel with Channel Estimation Error (채널 추정 오차가 있는 다중사용자 다중안테나 채널에서 신호 대 포스트-프로세싱 리키지 및 잡음비 기반 송신기와 수신기 결합 설계)

  • Seo, Dong-Joon;Lee, Pan-Hyung;Lee, Jae-Hong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.53-59
    • /
    • 2009
  • In multi-user MIMO systems, a base station transmits multiple data to multi-user simultaneously in order to improve performance and bandwidth efficiency. When the base station transmits multiple data to multi-user simultaneously, multi-user interference occurs severely. In this paper, we define a post-processing leakage as the total power leaked from desired user to all other users after combining at the output of each user. Using concept of the post-processing leakage, we also define a performance metric, the so called signal-to-post-processing-leakage-plus-noise ratio (SPPLNR). Assuming that the receiver is the minimum mean square error (MMSE) receiver, we propose an iterative SPPLNR-based beamforming that determines beamforming vectors and combining vectors by using an iterative method. The proposed scheme does not impose a condition on the relation between the number of transmit antennas for the base station and the number of receive antennas for users. Simulation results show that the proposed scheme outperforms a beamforming scheme perfectly eliminating the multi-user interference when channel estimation error exists.

SE-CAC: A Novel Call Admission Control Scheme for Multi-service IDMA Systems

  • Ge, Xin;Liu, Gongliang;Mao, Xingpeng;Zhang, Naitong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.5
    • /
    • pp.1049-1068
    • /
    • 2011
  • In this paper a simple and effective call admission control (CAC) scheme is proposed for the emerging interleave-division multiple-access (IDMA) systems, supporting a variety of traffic types and offering different quality of service (QoS) requirements and priority levels. The proposed scheme is signal-to-interference-plus-noise ratio (SINR) evolution based CAC (SE-CAC). The key idea behind the scheme is to take advantage of the SINR evolution technique in the process of making admission decisions, which is developed from the effective chip-by-chip (CBC) multi-user detection (MUD) process in IDMA systems. By virtue of this semi-analytical technique, the MUD efficiency can be estimated accurately. Additionally, the computational complexity can be considerably reduced. These features make the scheme highly suitable for IDMA systems, which can combat intra-cell interference efficiently with simple CBC MUD. Analysis and simulation results show that compared to the traditional CAC scheme considering MUD efficiency as a constant, the proposed SE-CAC scheme can guarantee high power efficiency and throughput for multimedia traffic even in heavy load conditions, illustrating the high efficiency of CBC MUD. Furthermore, based on the SINR evolution, the SE-CAC can make accurate estimation of available resource considering the effect of MUD, leading to low outage probability as well as low blocking and dropping probability.

DNN-Based Dynamic Cell Selection and Transmit Power Allocation Scheme for Energy Efficiency Heterogeneous Mobile Communication Networks (이기종 이동통신 네트워크에서 에너지 효율화를 위한 DNN 기반 동적 셀 선택과 송신 전력 할당 기법)

  • Kim, Donghyeon;Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1517-1524
    • /
    • 2022
  • In this paper, we consider a heterogeneous network (HetNet) consisting of one macro base station and multiple small base stations, and assume the coordinated multi-point transmission between the base stations. In addition, we assume that the channel between the base station and the user consists of path loss and Rayleigh fading. Under these assumptions, we present the energy efficiency (EE) achievable by the user for a given base station and we formulate an optimization problem of dynamic cell selection and transmit power allocation to maximize the total EE of the HetNet. In this paper, we propose an unsupervised deep learning method to solve the optimization problem. The proposed deep learning-based scheme can provide high EE while having low complexity compared to the conventional iterative convergence methods. Through the simulation, we show that the proposed dynamic cell selection scheme provides higher EE performance than the maximum signal-to-interference-plus-noise ratio scheme and the Lagrangian dual decomposition scheme, and the proposed transmit power allocation scheme provides the similar performance to the trust region interior point method which can achieve the maximum EE.