• Title/Summary/Keyword: Signal Power to Interference plus Noise Power Ratio

Search Result 67, Processing Time 0.03 seconds

Power Control Scheme for Effective Serving Cell Selection in Relay Environment of 3GPP LTE-Advanced System (3GPP LTE-Advanced 시스템의 Relay 환경에서 효율적인 Serving Cell 선택을 위한 Power Control 기법)

  • Min, Young-Il;Jang, Jun-Hee;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.215-222
    • /
    • 2011
  • In this paper, we propose a power control scheme for effective serving cell selection in Relay environment of 3GPP (3rd Generation Partnership Project) LTE (Long Tenn Evolution)-Advanced system. A conventional serving cell selection scheme which does not use channel states of backhaul link has a problem that this scheme does not select serving cell supporting maximum throughput. Also, conventional proposed serving cell selection schemes that eNB or RN transmits channel states of backhaul link have problems that conventional schemes need to additional data transmission, serving cell selection process complexity is increased because UE considers channel states of backhaul link, and received signal is degraded because strong interference which is transmission signal from RN. Therefore, for solve these problems, we propose power control scheme that RN control transmission power according to received SINR (Signal to Interference plus Noise Ratio) of backhaul link. By extensive computer simulation, we verify that the power control Relay scheme is attractive and suitable for the Relay environment.

Clustering based Novel Interference Management Scheme in Dense Small Cell Network (밀집한 소형셀 네트워크에서 클러스터링 기반 새로운 간섭 관리 기법)

  • Moon, Sangmi;Chu, Myeonghun;Lee, Jihye;Kwon, Soonho;Kim, Hanjong;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.13-18
    • /
    • 2016
  • In Long Term Evolution-Advanced (LTE-A), small cell enhancement(SCE) has been developed as a cost-effective way of supporting exponentially increasing demand of wireless data services and satisfying the user quality of service(QoS). However, there are many problems such as the transmission rate and transmission quality degradation due to the dense and irregular distribution of a large number of small cells. In this paper, we propose a clustering based interference management scheme in dense small cell network. We divide the small cells into different clusters according to the reference signal received power(RSRP) from user equipment(UE). Within a cluster, an almost blank subframe(ABS) is implemented to mitigate interference between the small cells. In addition, we apply the power control to reduce the interference between the clusters. Simulation results show that proposed scheme can improve Signal to Interference plus Noise Ratio(SINR), throughput, and spectral efficiency of small cell users. Eventually, proposed scheme can improve overall cell performance.

A game theory approach for efficient power control and interference management in two-tier femtocell networks based on local gain

  • Al-Gumaei, Y. A.;Noordin, K. A.;Reza, A. W.;Dimyati, K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2530-2547
    • /
    • 2015
  • In the recent years, femtocell technology has received a considerable attention due to the ability to provide an efficient indoor wireless coverage as well as enhanced capacity. However, under the spectrum sharing between femtocell user equipment (FUEs) and the owner of spectrum macrocell user equipment (MUEs), both may experience higher uplink interference to each other. This paper proposes a novel distributed power control algorithm for the interference management in two-tier femtocell networks. Due to the assignment of licensed radio frequency to the outdoor macrocell users, the access priority of MUEs should be higher than FUEs. In addition, the quality of service (QoS) of MUEs that is expressed in the target signal-to-interference-plus-noise ratio (SINR) must always be achieved. On the other hand, we consider an efficient QoS provisioning cost function for the low-tier FUEs. The proposed algorithm requires only local information and converges even in cases where the frontiers of available power serve the target SINRs impossible. The advantage of the algorithm is the ability to implement in a distributed manner. Simulation results show that the proposed algorithm based on our cost function provides effective resource allocation and substantial power saving as compared to the traditional algorithms.

우리나라 실정에 알맞는 위성통신 시스템에 관한 연구

  • 강영흥;조성언;고봉진;조성준;김원후
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.10
    • /
    • pp.868-878
    • /
    • 1990
  • Upon introducing satellite communication system to Korea, one of the important problems to cope with is the effect from the probable intentional interference I.e. jamming. In this paper we have investigated how much the performance of ordinary PSK signal and Directed Sequence Spread Spectrum PSK signal degrade by the effect of jamming in the satellite communication system. In analysis we have consider the M ary PSK signal and the liniter type nonlinear satellite transponder in an environment of uplink tone or noise jamming plus Gaussian noise and downlink Gaussian noise. Using the derived error rate equation we have evaluated the error performance of BPSK and QPSK systems and compared this with that of DS BPSK system. Form the results, we know that the nonlinear satellite system is degraded more severely by the effect of noise jamming than tone jamming and the effect of tone jamming on the error rate performance can be reduced more remarkably by increasing the process gain in DS BPSK system rather than increasing carrier to jamming noise power ratio in conventional BPSK system.

  • PDF

Efficient Interference Control Technology for Vehicular Moving Networks

  • Oh, Sung-Min;Lee, Changhee;Lee, Jeong-Hwan;Park, Ae-Soon;Shin, Jae Sheung
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.867-876
    • /
    • 2015
  • This paper proposes an efficient interference control scheme for vehicular moving networks. The features of the proposed scheme are as follows: radio resources are separated into two resource groups to avoid interference between the cellular and vehicle-to-vehicle (V2V) links; V2V links are able to share the same radio resources for an improvement in the resource efficiency; and vehicles can adaptively adjust their transmission power according to the interference among the V2V links (based on the distributed power control (DPC) scheme derived using the network utility maximization method). The DPC scheme, which is the main feature of the proposed scheme, can improve both the reliability and data rate of a V2V link. Simulation results show that the DPC scheme improves the average signal-to-interference-plus-noise ratio of V2V links by more than 4 dB, and the sum data rate of the V2V links by 15% and 137% compared with conventional schemes.

An Applebaum Array Adopting an AGC for the Rejection of Eigenvalue Spreaded Interferences (고유치 확산된 간섭 신호 제거를 위한 AGC를 이용한 Applebaum 어레이)

  • Lee, Kyu-Man;Han, Dong-Seog;Cho, Myeong-Je
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.2
    • /
    • pp.60-67
    • /
    • 2000
  • When the eigenvalues of the input covariance matrix of an array system spread by orders of magnitude, conventional adaptive arrays can't remove all the interference signals effectively In this paper, an Applebaum array adopting an adaptive gain controller (AGC) in the feedback loop of the array is proposed When eigenvalue spreaded interferences are incident to an array, a high power interference is removed easily in several iterations while a relative low power interference which is a cause of eigenvalue spread is still remained In the array output After some initial iterations, the proposed array increases the correlation between the low power interference and the array output by amplifying the output signal of the array As a result, the weights vector adapts to the direction of the low power interference as well as that of the high power interference Computer simulation results show that the proposed array gives high output signal to interference plus noise ratio (SINR) and a fast convergence speed.

  • PDF

Interference Management with Cell Selection using Cell Range Expansion and ABS in Heterogeneous Network based on LTE-Advanced (LTE-Advanced 기반 이종 네트워크에서 셀 영역 확장에 대한 셀 선택과 ABS를 통한 간섭 관리 기법)

  • Moon, Sangmi;Kim, Bora;Malik, Saransh;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.39-44
    • /
    • 2013
  • Long Term Evolution (LTE) - Advanced has developed Heterogeneous Network (HetNet) that consists of a mix of macrocells and low-power nodes such as picocells to improve the system performance. Also, to encourage data offloading in HetNet, Cell Range Expansion (CRE) have been introduced. In this paper, we propose a cell selection scheme based on Signal to Interference plus Noise Ratio (SINR) for optimal offloading effect. And we manage the interference for user located in cell range expanded region using Almost Blank Subframe (ABS) with flexible ABS ratio to improve the spectrum efficiency in time domain. Simulation results show that proposed scheme can improve spectrum efficiency of macrocell and picocell user. Eventually, proposed scheme can imporve overall user performance.

Channel Estimation Method Using Power Control Schemes in Wireless Systems

  • Kim, Byoung-Gi;Ryoo, Sang-Jin
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.140-149
    • /
    • 2010
  • Green communication is a new paradigm of designing the communication system which considers not only the processing performance but also the energy efficiency. Power control management is one of the approaches in green communication to reduce the power consumption in distributed communication system. In this paper, we propose improved power control schemes for mobile satellite systems with ancillary terrestrial components (ATCs). In order to increase system capacity and reduce the transmitting power of the user's equipment, we propose an efficient channel estimation method consisting of a modified open-loop power control (OLPC) and closed-loop power control (CLPC). The OLPC works well if the forward and reverse links are perfectly correlated. The CLPC is sensitive to round-trip delay and, therefore, it is not effective in a mobile satellite system. In order to solve the above problem, we added monitoring equipment to both the OLPC and CLPC to use information about transmitting power that has not yet been received by the receiver over the satellite/ATC channel. Moreover, we adapted an efficient pilot diversity of both OLPC and CLPC in order to get a better signal to interference plus noise ratio estimation of the received signal.

Maximizing Network Utility and Network Lifetime in Energy-Constrained Ad Hoc Wireless Networks

  • Casaquite, Reizel;Hwang, Won-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.1023-1033
    • /
    • 2007
  • This study considers a joint congestion control, routing and power control for energy-constrained wireless networks. A mathematical model is introduced which includes maximization of network utility, maximization of network lifetime, and trade-off between network utility and network lifetime. The framework would maximize the overall throughput of the network where the overall throughput depends on the data flow rates which in turn is dependent on the link capacities. The link capacity on the other hand is a function of transmit power levels and link Signal-to-Interference-plus-Noise-Ratio (SINR) which makes the power allocation problem inherently difficult to solve. Using dual decomposition techniques, subgradient method, and logarithmic transformations, a joint algorithm for rate and power allocation problems was formulated. Numerical examples for each optimization problem were also provided.

Inter-Sector Beamforming with MMSE Receiver in the Downlink of TDD Cellular Systems

  • Yeom, Jae-Heung;Lee, Yong-Hwan
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.118-126
    • /
    • 2008
  • The use of beamforming is effective for users in limited power environments. However, when it is applied to the downlink of a cellular system with universal frequency reuse, users near the sector boundary may experience significant interference from more than one sector. The use of a minimum mean square error (MMSE)-type receiver may not sufficiently cancel out the interference unless a sufficient number of receive antennas are used. In this paper, we consider the use of inter-sector beamforming that cooperates with a neighboring sector in the same cell to mitigate this interference problem in time-division duplex (TDD) environments. The proposed scheme can avoid interference from an adjacent sector in the same cell, while enhancing the transmit array gain by using the TDD reciprocity. The performance of the proposed scheme is analyzed in terms of the output signal-to-interference-plus-noise power ratio (SINR) and the output capacity when applied to an MMSE-type receiver. The beamforming mode can be analytically switched between the inter-sector and the single-sector mode based on the long-term channel information. Finally, the effectiveness of the proposed scheme is verified by computer simulation.