• Title/Summary/Keyword: Signal Direction

Search Result 976, Processing Time 0.032 seconds

Design and analysis of direction indicating algorithm for sound reception system based on spectral analysis of whistle signal (기적신호의 스펙트럼 분석을 통한 음향수신장치의 방향탐지 알고리즘 설계 및 분석)

  • Kwon, Hyuk-Jin;Kim, Jeong-Chang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.83-90
    • /
    • 2017
  • In this paper, a sound reception system using a phase difference of whistle signals is proposed and analyzed based on spectral analysis. The proposed system receives whistle signals from four microphones installed in four different directions with 90-degree intervals between them. The proposed algorithm detects the phase of each received signal based on spectral analysis and estimates the direction of the whistle signal by obtaining the phase difference between the received signals from two adjacent microphones. Furthermore, we theoretically analyze the phase difference between two adjacent received signals according to their arrival angles and implement the proposed system using a DSP chip. In addition, the operation of the proposed algorithm are verified using the implemented system in a laboratory environment. Experimental results show that the proposed scheme can well estimate the direction of the whistle signal.

SDP-Based Adaptive Beamforming with a Direction Range (방향범위를 이용한 SDP 기반 적응 빔 형성)

  • Choi, Yang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.9
    • /
    • pp.519-527
    • /
    • 2014
  • Adaptive arrays can minimize contributions from interferences incident onto an sensor array while preserving a signal the direction vector of which corresponds to the array steering vector to within a scalar factor. If there exist errors in the steering vector, severe performance degradation can be caused since the desired signal is misunderstood as an interference by the array. This paper presents an adaptive beamforming method which is robust against steering vector errors, exploiting a range of the desired signal direction. In the presented method, an correlation matrix of array response vectors is obtained through integration over the direction range and a minimization problem is formulated using some eigenvectors of the correlation matrix such that a more accurate steering vector than initially given one can be found. The minimization problem is transformed into a relaxed SDP (semidefinite program) problem, which can be effectively solved since it is a sort of convex optimization. Simulation results show that the proposed method outperforms existing ones such as ORM (outside-range-based method) and USM (uncertainty-based method).

Input Signal Model Analysis for Adaptive Beamformer (적응 빔형성기의 입력신호 모델 분석)

  • Mun, Ji-Youn;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.3
    • /
    • pp.433-438
    • /
    • 2017
  • Containing an Angle-of-Arrival(: AOA) estimation and interference suppression techniques, an adaptive beamformer is one of core techniques for the Signal Intelligence(: SIGINT) which collect various intelligence utilizing cutting edge devices including the radar and satellite. It generates a beam with the directivity in a corresponding direction, to efficiently receive a signal from the specific direction, using antenna array. In this paper, we present the received signal model including interference signals and noise, which can be applied to an input of the signal intelligence satellite system equipped with the AOA estimation and the interference cancellation techniques, and analysis the characteristics of various signals, which can be included in the proposed received signal model. This proposed signal model can be directly applied to the performance evaluation for a variety of beamforming techniques. Also, we verify the spectrum characteristic of the presented received signal model in the frequency domain through computer simulation examples.

Direction Finding Method of the Uniform Circular Array Antenna Using the Pattern of Phase Differences (원형배열 안테나의 위상차 패턴을 이용한 방향탐지 기법)

  • Lim, Joong-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • In this paper, we have studied a direction finding method of the radio signal by comparing the phase difference and its pattern from the uniform circular array antenna. In the phase comparison direction finding, if the length of the antenna baseline is longer than 0.5 wavelength of the incident signal, azimuth ambiguity occurs in which two or more azimuth angles are calculated in the same phase difference. The azimuthal ambiguity is removed by fusing the phase difference of the 5 antennas. The developed ambiguity elimination technology reduces the azimuth error where the antenna baseline is shorter than 1.236 wavelength in the uniform circular array with five antennas. This algorithm is very useful for the design of direction finder of an electronic information system.

A Study on an Improved MVE for Estimating the Direction of Arrival of Multiple Sources (다중 신호원의 도래방향 추정을 위한 개선된 MVE에 관한 연구)

  • 정용민;신준호;김용득
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.687-690
    • /
    • 1999
  • Many high-resolution algorithms based on the eigen-decomposition analysis of observed covariance matrix, such as MVE, MUSIC, and EVM, have been proposed. However, the resolution of spectral estimates for these algorithms is severely degraded when Signal-to-Noise Ratio (SNR) is low and arrival angles of signal are close to each other. And EVM and MUSIC is powerful for the characteristic of SNR. But have the limitation that the number of signals presented is known. While MVE is bad the characteristic of SNR. In this study, we propose a modified MVE to enhance the resolution for Direction-Of-Arrival (DOA) estimation of underwater acoustic signal. This is to remove the limitation that existing algorithms should know the information for the number of signals. Because the algorithms founded on the eigen value estimate DOA with only the noise subspace, they have the high-resolution characteristic. And then, with the method reducing the effect of the signal subspace, we are to reduce the degradation because of complementary relationship between the signal subspace and the noise subspace. This paper, with using the simulation data, we have estimated the proposed algorithms, compared it with other high-resolution algorithms. The simulation results show that the modified MVE proposed is accurate and has a better resolution even though SNR is low, under the same condition.

  • PDF

The Experimental Study on Optical Characteristics of a Detector by Turbidity Variance (탁도 변화에 따른 검출기의 광원특성에 관한 실험적 고찰)

  • Kim, Young-Do;Lee, Kye-Bock
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.50-56
    • /
    • 2007
  • In this study, we have performed some experimental works on the effects of variation of low, middle and high turbidity for understanding of optical characteristics which is very important factor for the turbidity measurement. The various output frequencies were obtained by the experimental apparatus which consist of detectors, a light source, a frequency counter and so on. From the result of analysis of these frequencies, Firstly, The difference of signal value for each degrees of low turbidity was the smallest of three scopes around the Nephelometric position. Second, the characteristics of each degrees of middle turbidity was proved that signal values of all degrees were larger those of low turbidity but the difference of each signal value of the forward direction was smaller than that of the backward direction. Third, the characteristics of each degrees of high turbidity was proved that though similar to the characteristics of middle turbidity, each signal value of all degrees was larger and the difference of each signal value of all degrees was smaller than those of low and middle turbidity

A Study on Adaptive Processing of Digital Receiver for Adaptive Array Antenna (어댑티브 어레이 안테나용 디지털 수신기의 적응처리에 관한 연구)

  • 민경식;박철근
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.879-885
    • /
    • 2004
  • This paper describes an adaptive signal processing of digital receiver with digital down convertor(DDC). DDC is composed of numerically controlled oscillator(NCO) and digital low pass filler and the received signal is processed by numerical algorithm. The simulation results of digital receiver using the passband sampling technique are presented and we confirmed that the received low IF signal is converted to zero IF by numerically processed DDC. Direction of arrival(DOA) estimation technique using multiple signal classification(MUSIC) algorithm with high resolution is also discussed. We knew that an accurate resolution of DOA depends on the input sampling numbers and antenna element numbers.

A Study on the Target Position Estimation Algorithm to Radar System (레이더 시스템에서 목표물 위치추정 알고리즘에 대한 연구)

  • Lee, Kwan-Houng;Song, Woo-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.5
    • /
    • pp.111-116
    • /
    • 2008
  • Radar system must estimate exactly quickness and target in interference channel. Because interference of radio channel is multipath channel by artificial structure and nature structure. signal estimation is difficult. As long as, get rid of interference signal have been study digital beamforming, adaptive array antenna and so on. In this paper, proposed SPT-SALCMV beamforming algorithm get rid of coherent interference algorithm and adaptive array antenna. Adaptive array forms null pattern and reduces gains for direction of interference signal. And estimate signal that want by keeping gains of beam pattern changelessly to target signal direction. In this paper, proposed SPT-SALCMV algorithm was exactly received position of target. But general SPT-LCMV algorithm resulted beam error about 30degrees. Therefore, proved that SPT-SALCMV algerian that propose in this paper is more excellent than genaral SPT-LCMV algorithm.

  • PDF

A study on digital sound reception systems for ships (선박용 디지털 음향수신장치 연구)

  • Kim, Hyungjong;Kim, Jeongchang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1125-1130
    • /
    • 2014
  • In this paper, we propose a sound reception system against surrounding noise for ships based on digital signal processing technologies. In order to suppress unwanted surrounding noises, a digital band-pass filter is designed, which the pass-band of the filter is between 70Hz to 820Hz. Also, we develope a sound direction indicating algorithm with 4 microphones. After filtering the audio signals from 4 microphones, the developed sound direction indicating algorithm can indicate 8 directions. In addition, we implement prototype board for the sound reception using a digital signal processor chip and audio codecs, and verify the proposed algorithm.

Cancellation of MRI Motion Artifact in Image Plane

  • Kim Eung-Kyeu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.1
    • /
    • pp.49-57
    • /
    • 2000
  • In this study, a new algorithm for canceling a MRI artifact due to the translational motion In the image plane is described. Unlike the conventional iterative phase retrieval algorithm, in which there is no guarantee for the convergence, a direct method for estimating the motion is presented. In previous approaches, the motions in the x(read out) direction and the y(phase encoding) direction were estimated simultaneously. However, the feature of x and y directional motions are different from each other. By analyzing their features, each x and y directional motion is canceled by the different algorithms in two steps. First, it is noticed that the x directional motion corresponds to a shift of the x directional spectrum of the MRI signal, and the non-zero area of the spectrum just corresponds to the projected area of the density function on the x axis. So the motion is estimated by tracing the edges between non-zero area and zero area of the spectrum, and the x directional motion is canceled by shifting the spectrum in an reverse direction. Next, the y directional motion is canceled by using a new constraint condition, with which the motion component and the true image component can be separated. This algorithm is shown to be effective by using a phantom image with simulated motion.

  • PDF