• 제목/요약/키워드: Signal Classification

검색결과 927건 처리시간 0.028초

주성분 분석과 인공신경망을 이용한 피로균열 열림.닫힘 시 음향방출 신호분류 (Classification of Acoustic Emission Signals for Fatigue Crack Opening and Closure by Artificial Neural Network Based on Principal Component Analysis)

  • 김기복;윤동진;정중채;이승석
    • 비파괴검사학회지
    • /
    • 제22권5호
    • /
    • pp.532-538
    • /
    • 2002
  • 3가지 종류의 알루미늄 합금강의 피로균열 진전 시 균열 열림 및 닫힘에 따른 음향방출 신호를 분류하기 위하여 주성분 분석 방법과 인공신경망 기법을 적용하였다. 재료의 균열 열림과 닫힘, 마찰 등과 같은 여러 가지 AE 신호를 얻기 위하여 피로시험을 수행하였다. 주성분 분석결과 AE 파라미터의 제 1 및 제 2 주성분만으로도 균열 열렴 및 닫힘에 대한 AE 신호의 변이를 94% 이상 설명할 수 있는 것으로 분석되어 주성분 분석 기법을 이용한 균열 열림 및 닫힘에 대한 신호해석이 가능한 것으로 나타났다. AE 신호의 주성분들을 입력변수로 사용한 인공신경망을 이용하여 균열 열림 및 닫힘을 분류할 수 있는 분류기를 개발하고 평가한 결과 분류기의 입력 변수로서 2개의 주성분을 이용 할 경우 전체 AE 파라미터를 입력변수로 사용한 경우 보다 분류 성능이 향상되었다.

다채널전극으로 기록한 토끼 망막신경절세포의 활동전위 파형 구분 (Waveform Sorting of Rabbit Retinal Ganglion Cell Activity Recorded with Multielectrode Array)

  • 진계환;이태수;구용숙
    • 한국의학물리학회지:의학물리
    • /
    • 제16권3호
    • /
    • pp.148-154
    • /
    • 2005
  • 망막에서 나오는 활동전위와 같이 복잡한 신경망을 거쳐 처리되는 전기신호를 분석하기 위해서는 기존의 단일 전극 기록법으로는 어렵다. 단일 전극을 통한 활동전위의 기록은 개개의 신경세포 특성을 알아내는 데에는 유용한 방법이나 신경세포 간의 시간적, 공간적인 관계는 알아낼 수 없다는 한계를 가지고 있으므로 이같은 한계를 극복하기 위하여 다채널 전극을 이용한 신경신호 기록방법이 최근에 개발되어 널리 이용되고 있다. 다채널전극 기록 방식인 MEA60 시스템은 세포 밖에 위치한 60개의 전극이 생체신호를 동시에 기록한다. 세포 fi에 위치한 각각의 전극이 포착한 신경 신호는 하나의 망막신경절세포 반응이라기보다는 여러 세포의 반응이 동시에 기록될 가능성이 높다. 그러므로 여러 세포의 반응이 함께 기록된 신호로부터 각각의 세포로부터 나오는 파형을 구분하는 작업이 반드시 필요하다. 본 연구에서는 다채널 전극으로 기록한 망막 신경절세포 신호로부터 MATLAB을 이용하여 활동전위 파형을 검출하고 분류하는 과정을 구현하여 보았다. 이러한 분류과정은 추후 진행되는 신호분석방법인 자극 후 시간 히스토그램(poststimulus time histogram, PSTH), 자기상관관계(autocorrelogram), 상호상관관계(cross-correlogram)를 보기 위하여 반드시 거쳐야 하는 전처리(preprocess) 과정이다. 본 연구에서는 MATLAB을 이용한 파형 구분 프로토콜을 확립하였을 뿐만 아니라 이러한 프로토콜이 신경절 세포의 활동전위 파형을 검출하는 데 유용한 방법임을 입증하였다

  • PDF

3축 가속도 센서를 이용한 낙상 검출 시스템 구현 (Implementation of Falls Detection System Using 3-axial Accelerometer Sensor)

  • 전아영;유주연;박근철;전계록
    • 한국산학기술학회논문지
    • /
    • 제11권5호
    • /
    • pp.1564-1572
    • /
    • 2010
  • 본 연구에서는 3축 가속도 신호를 이용하여 낙상과 낙상 방향을 검출하는 시스템을 구현하였다. 가속도 신호는 3축 가속도 센서로부터 획득하였으며, 획득된 신호를 USB 인터페이스를 통하여 PC에 전달하였다. PC에 전송된 신호를 제안한 알고리즘을 사용하여 낙상을 검출하였으며, 퍼지 분류기를 사용하여 낙상의 방향을 분류하였다. 실험을 위하여 실험대상군 6명 선정하였으며, 가슴에 가속도계를 부착한 후 실험을 수행하였다. 실험대상자는 5초 동안 정상 보행을 한 후 4 가지 방향(전 후 좌 우)으로 낙상이 발생하도록 하였으며, 낙상에 소요되는 시간은 최소 2초로 설정하였다. 본 연구에서 제안된 알고리즘을 이용하여 낙상을 검출하였으며 낙상 발생 후 1초부터 데이터를 분석하고 퍼지 분류기를 이용하여 낙상방향을 분류하였다. 낙상 검출율은 평균 94.79%이었다. 낙상 방향에 따른 분류율은 front_fall은 95.83%, back_fall은 100%, left_fall 은 87.5%, right_fall은 95.83%이었다.

원형 근전도 센서 어레이 시스템의 센서 틀어짐에 강인한 손 제스쳐 인식 (Hand Gesture Recognition Regardless of Sensor Misplacement for Circular EMG Sensor Array System)

  • 주성수;박훈기;김인영;이종실
    • 재활복지공학회논문지
    • /
    • 제11권4호
    • /
    • pp.371-376
    • /
    • 2017
  • 본 논문에서는 원형 근전도 시스템 장비를 사용하여 근전도 패턴인식을 할 때, 장비의 센서 위치와 무관하게 패턴 인식이 가능한 알고리즘을 제안한다. 6가지 동작의 8채널 근전도 신호를 1초간 측정한 데이터를 이용하여 14개의 특징점을 추출하였다. 또한 8개의 채널에서 추출된 112개의 특징점을 나열하여 주성분분석을 하고 영향력이 높은 데이터만을 추려내어 8개의 입력 신호로 줄였다. 모든 실험은 k-NN 분류기를 이용하여 데이터를 학습시키고 5-fold 교차 검증을 사용하여 데이터를 검증하였다. 기계학습에서 데이터를 학습시킬 때, 어떤 데이터를 학습하느냐에 따라 그 결과가 크게 달라진다. 기존의 연구들에서 사용하는 학습 데이터를 사용 할 경우 99.3%의 정확도를 확인하였다. 그러나 센서의 위치가 22.5도 정도만 틀어지더라도 67.28%의 정확도로 명확하게 떨어짐을 보았다. 본 논문에서 제안하는 학습 방법을 사용 할 경우 98%의 정확도를 보이고 장비의 센서의 위치가 바뀌더라도 98% 근처의 정확도를 유지함을 보였다. 이러한 결과를 사용하여 원형 근전도 시스템을 사용하는 사용자들의 편의성을 크게 증대시켜 줄 수 있을 것으로 보인다.

산업용 CR영상의 기하학적 구도분석과 영역분할 (Geometric Scheme Analysis and Region Segmentation for Industrial CR Images)

  • 황중원;황재호
    • 대한전자공학회논문지SP
    • /
    • 제46권4호
    • /
    • pp.124-131
    • /
    • 2009
  • 방사선영상의 신뢰할 만한 영역검출은 용접부위 결함탐지 이전의 중요한 작업 중의 하나이다. 추출되는 특징들은 각 분할된 영상에 대하여 서로 다른 군집으로 분류되어야한다. 그러나 종래의 분할 기법으로는 방사선영상 고유의 색도중첩과 낮은 SN비로 인해 만족할 만한 결과를 얻기가 쉽지 않다. 전체나 국부처리로는 잡음제거에 취약할 뿐만 아니라 영역분류도 어렵다. 이 논문은 산업용 CR 영상에서 영역기반실현의 분할을 위한 적절한 기법을 제시한다. 강판튜브에서 용접과 비용접 구간의 기하학적 차이가 영상화 과정을 통해 배경부, 두께부, 중간부 및 용접부 영역을 생성하고 계층 구조적 배열을 형성한다. 비록 그 구조가 잡음에 훼손되기는 하지만 영역구분 구도 각 영역의 차별된 기하학적 특성에 근거한 국부군집화에 의해 선별이 가능하다. 관련 영역의 기하학적 속성에 의해 그에 따른 영역이 계층별로 선별되어 실제 구분이 영역간 경계를 반영하기 때문에 직경과 길이방향의 군집화는 각 계층의 구별을 명확케 한다. 그리고 산업용 강판튜브 CR영상에 다양한 분할 방식으로 비교 실험을 실시하여 이 기법의 효과를 보였다.

바이스태틱 레이다를 이용한 이동표적에 대한 표적식별 성능 분석 (Analysis of Target Identification Performances against the Moving Targets Using a Bistatic Radar)

  • 이승재;배지훈;정성재;양은정;김경태
    • 한국전자파학회논문지
    • /
    • 제27권2호
    • /
    • pp.198-207
    • /
    • 2016
  • 바이스태틱(Bistatic) 레이다는 기존의 모노스태틱(Monostatic) 레이다로는 수행하기 어려운 저피탐(stealth) 표적에 대한 탐지 및 식별을 용이하게 해준다. 하지만 표적식별을 위해 바이스태틱 레이다의 수신신호로부터 고해상도 거리 측면도(high resolution range profile: HRRP)를 형성할 시, 바이스태틱 고유의 기하구조로 인해 바이스태틱 HRRP 내 왜곡현상이 발생하고, 이는 표적에 대한 정확한 거리 정보를 획득하기 어렵게 한다. 더욱이 바이스태틱 HRRP 내 나타나는 표적의 전자기적 산란 메커니즘은 바이스태틱 기하구조에 따라 다양하게 변하기 때문에 효율적인 훈련 데이터베이스 구축은 바이스태틱 표적식별에서의 핵심 사항이 된다. 본 논문에서는 모노스태틱 표적식별에서 효과적인 성능을 보였던 비행 시나리오에 기반한 훈련 데이터베이스 구축 기법을 바이스태틱 표적식별에 적용해 보고, 그 성능과 효율성을 분석한다. 시뮬레이션에서는 레이다와 표적의 거리가 충분히 먼 경우, 비행시나리오에 기반한 데이터베이스를 이용하여 효율적으로 바이스태틱 표적식별을 수행할 수 있음을 보인다.

대용량 고해상 위성영상처리 시스템 개발 (Development of an Image Processing System for the Large Size High Resolution Satellite Images)

  • 김경옥;양영규;안충현
    • 대한원격탐사학회지
    • /
    • 제14권4호
    • /
    • pp.376-391
    • /
    • 1998
  • 위성의 발달에 따라 고해상영상이 등장하게 되었고 지표상태 분석에 매우 유용하게 되었다. GeoWatch는 지능형 영상처리 시스템으로서, 고해상도 영상을 이용하여 디지타이징, 지리보정, 강조, 여러 가지 연산, 식생지수 분석, 등을 하여 지표면 분석 등을 할 수 있는 시스템이다. 도한 지능형 분석 방법등 여러 가지 기법을 이용하여 변화지역분석, 토지 분류, 도시정보추출 등을 수행한다. 이 시스템의 강점은 full scene 영상같은 대용량 영상을 다룰 경우 역동적인 알고리즘 저장 방식을 채택하였고, 자동메뉴 생성, 사용자 편의를 위한 비쥬얼 프로그래밍 환경 등을 제공한다. 이 시스템은 또한 위성영상 위에 벡터를 중첩하여 분석하거나 수정 작업을 할 수 있고, 3차원 비행 시뮬레이션도 가능하다. 이 시스템은 영상 처리 모듈 외에도 영상 변환 및 수정 유틸리티 기능을 많이 제공한다. 본 논문에서는 또한 지능형 영상 분석 방법 뿐만 아니라, 대용량처리나, 비쥬얼 프로그램을 위한 디자인 개념을 제공한다.

Prediction of itching diagnostic marker through RNA sequencing of contact hypersensitivity and skin scratching stimulation mice models

  • Kim, Young-Won;Zhou, Tong;Ko, Eun-A;Kim, Seongtae;Lee, Donghee;Seo, Yelim;Kwon, Nahee;Choi, Taeyeon;Lim, Heejung;Cho, Sungvin;Bae, Gwanhui;Hwang, Yuseong;Kim, Dojin;Park, Hyewon;Lee, Minjae;Jang, Eunkyung;Choi, Jeongyoon;Bae, Hyemi;Lim, Inja;Bang, Hyoweon;Ko, Jae-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권2호
    • /
    • pp.151-159
    • /
    • 2019
  • Pruritus (itching) is classically defined as an unpleasant cutaneous sensation that leads to scratching behavior. Although the scientific criteria of classification for pruritic diseases are not clear, it can be divided as acute or chronic by duration of symptoms. In this study, we investigated whether skin injury caused by chemical (contact hypersensitivity, CHS) or physical (skin-scratching stimulation, SSS) stimuli causes initial pruritus and analyzed gene expression profiles systemically to determine how changes in skin gene expression in the affected area are related to itching. In both CHS and SSS, we ranked the Gene Ontology Biological Process terms that are generally associated with changes. The factors associated with upregulation were keratinization, inflammatory response and neutrophil chemotaxis. The Kyoto Encyclopedia of Genes and Genomes pathway shows the difference of immune system, cell growth and death, signaling molecules and interactions, and signal transduction pathways. Il1a, Il1b and Il22 were upregulated in the CHS, and Tnf, Tnfrsf1b, Il1b, Il1r1 and Il6 were upregulated in the SSS. Trpc1 channel genes were observed in representative itching-related candidate genes. By comparing and analyzing RNA-sequencing data obtained from the skin tissue of each animal model in these characteristic stages, it is possible to find useful diagnostic markers for the treatment of itching, to diagnose itching causes and to apply customized treatment.

실생활 음향 데이터 기반 이중 CNN 구조를 특징으로 하는 음향 이벤트 인식 알고리즘 (Dual CNN Structured Sound Event Detection Algorithm Based on Real Life Acoustic Dataset)

  • 서상원;임우택;정영호;이태진;김휘용
    • 방송공학회논문지
    • /
    • 제23권6호
    • /
    • pp.855-865
    • /
    • 2018
  • 음향 이벤트 인식은 다수의 음향 이벤트가 발생하는 환경에서 이를 인식하고 각각의 발생과 소멸 시점을 판단하는 기술로써 인간의 청각적 인지 특성을 모델화하는 연구다. 음향 장면 및 이벤트 인식 연구 그룹인 DCASE는 연구자들의 참여 유도와 더불어 음향 인식 연구의 활성화를 위해 챌린지를 진행하고 있다. 그러나 DCASE 챌린지에서 제공하는 데이터 세트는 이미지 인식 분야의 대표적인 데이터 세트인 이미지넷에 비해 상대적으로 작은 규모이며, 이 외에 공개된 음향 데이터 세트는 많지 않아 알고리즘 개발에 어려움이 있다. 본 연구에서는 음향 이벤트 인식 기술 개발을 위해 실내외에서 발생할 수 있는 이벤트를 정의하고 수집을 진행하였으며, 보다 큰 규모의 데이터 세트를 확보하였다. 또한, 인식 성능 개선을 위해 음향 이벤트 존재 여부를 판단하는 보조 신경망을 추가한 이중 CNN 구조의 알고리즘을 개발하였고, 2016년과 2017년의 DCASE 챌린지 기준 시스템과 성능 비교 실험을 진행하였다.

전자공격체계 연구개발 동향 분석과 발전방안에 대한 연구 (A Study on the Analysis of R&D Trends and the Development Plan of Electronic Attack System)

  • 심재성;박병호
    • 한국산학기술학회논문지
    • /
    • 제22권6호
    • /
    • pp.469-476
    • /
    • 2021
  • 전자공격체계는 전파를 사용하는 방공 레이더, 무선 지휘통신망, 유도 미사일과 같은 다중 위협에 대해 신호추적, 전자교란 등의 전자전 임무 수행을 위한 필수 무기체계이다. 군사적으로는 전자공격 임무 수행을 통해 다중 위협의 기능무력화 등 해당 위협으로부터 아군 전력을 보호하여 생존성 향상과 더불어 전투효과 극대화가 가능하다. 또한, 최근 민간분야에서는 공항, 통신 기지국, 발전소와 같은 핵심기반시설에 대한 드론 공격 등의 위협 대응을 위하여 전파방해 시스템으로 활용이 가능하다. 본 연구에서는 항공 플랫폼 기반 국외 전자공격체계에 대하여 전자공격 임무에 따른 분류 기준을 살펴본 후 이에 따른 국외 전자공격체계의 최신 연구개발 동향을 조사·분석한다. 더불어, 운용환경별 국내 전자공격체계의 연구개발 동향과 국내 안보환경 속에서 예측되는 미래 전장환경을 분석하여 국외 연구개발 동향 대비 국내 전자공격체계의 기술분야별 연구 발전이 필요한 다중위협 대응 신호추적 기술, 고출력 동시 전자교란 기술 등 다변적이고 고도화 되는 미래 전장환경에 부합할 수 있는 국내 전자공격체계의 연구 발전방안을 제시한다.