• Title/Summary/Keyword: Sidon sequence

Search Result 1, Processing Time 0.014 seconds

ON SIDON SETS IN A RANDOM SET OF VECTORS

  • Lee, Sang June
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.503-517
    • /
    • 2016
  • For positive integers d and n, let $[n]^d$ be the set of all vectors ($a_1,a_2,{\cdots},a_d$), where ai is an integer with $0{\leq}a_i{\leq}n-1$. A subset S of $[n]^d$ is called a Sidon set if all sums of two (not necessarily distinct) vectors in S are distinct. In this paper, we estimate two numbers related to the maximum size of Sidon sets in $[n]^d$. First, let $\mathcal{Z}_{n,d}$ be the number of all Sidon sets in $[n]^d$. We show that ${\log}(\mathcal{Z}_{n,d})={\Theta}(n^{d/2})$, where the constants of ${\Theta}$ depend only on d. Next, we estimate the maximum size of Sidon sets contained in a random set $[n]^d_p$, where $[n]^d_p$ denotes a random set obtained from $[n]^d$ by choosing each element independently with probability p.