• Title/Summary/Keyword: Side-lobe level

Search Result 113, Processing Time 0.023 seconds

A Design of the Double Circular Array Patch Antenna Minimized the Side Lobe (부엽준위를 극소화한 이중 원형 배열 패치 안테나의 설계)

  • 진경수;이원석;한정세;박병우;정치현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9B
    • /
    • pp.1676-1682
    • /
    • 1999
  • In this paper, the double circular array microstrip patch antenna was designed to minimize the side lobe in which a cooperate feeding network was used to supply the same amplitude and equi-phase to each antenna element. Eight microstirip patch antenna(MPA) elements were arrayed with $45^{\circ}$ interval in the inner circle and the outer circle respectively. The simulation results showed that when the radii of the inner circle and the outer circle were 0.7 $\lambda$0 and 1.45 $\lambda$0, the side lobes of beam pattern were minimized. As the results of the measurements, the return loss of the designed antenna was -14.5[dB] at 11.75[GHz] in the input terminal. When the level of the main lobe was normalized at 0[dB], those of the first and the second side lobe were -18[dB] and -26[dB] respectively. The radiation patterns agree well with the simulated patterns.

  • PDF

Optimal design of a sparse planar array sensor for underwater vehicles (수중 운동체용 희소 평면배열 센서의 최적 설계)

  • Afzal, Muhammad Shakeel;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.53-59
    • /
    • 2018
  • In this study, a new design method is developed to optimize the structure of an underwater sparse array sensor. The purpose of this research is to design the structure of a sparse array that has the performance equivalent to a fully sampled array. The directional factor of a sparse planar array is derived as a function of the structural parameters of the array. With the derived equation, the structure of the sparse array sensor is designed to have the performance equivalent to that of the fully array sensor through structural optimization of the number and location of transmitting and receiving elements in the array. The designed sparse array sensor shows beam patterns very close to those of the fully array sensor in terms of PSLL (Peak Side Lobe Level) and MLBW (Main Lobe Beam Width), which confirms the effectiveness of the present optimal design method. Further, the validity of the analytic beam patterns is verified by comparing them with those from the FEA (Finite Element Analysis) of the optimized sparse array structure.

Effects of Mesh Structure Variations of Meshed Ground on Microstrip Comb Array Antenna (그물망 접지의 그물망 구조의 변화가 MCAA에 미치는 영향)

  • Ki, Hyeon-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.69-74
    • /
    • 2018
  • In this paper, We investigated the effects of mesh structure variations of meshed ground on MCAA(Microstrip Comb Array Antenna). First, we designed MCAA in 24GHz ISM band and we investigated the variations of the gain and the SLL(Side Lobe Level) of the MCAA as we varied the mesh structure of the meshed ground. We varied two variables, mesh size and unfilled rato, which is defined as no metal area ratio in mesh for the investigation. We investigated two types of MCAA. Those are flat MCAA composed of flat radiator and tapered MCAA composed of tapered radiator. Both the antenna gains of flat MCAA and tapered MCAA are decreased as the unfilled rato increased. However, increase of mesh size made more dramatic decrease in antenna gain than increase of unfilled rato. The antenna SLL showed similar trend. But tapered MCAA affected more severely by variation of mesh size than flat MCAA.

Characteristic Analysis of Meshed SF-MPAA Characteristics depend on Mesh Transparency (그물의 투명도에 따른 그물망 SF-MPAA의 특성 분석)

  • Ki, Hyeon-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.163-168
    • /
    • 2019
  • In this paper, We investigated the effects of the transparency variations from 0% to 90.7% on meshed SF-MPAA(Series Fed Microstrip Patch Array Antenna). For this, we designed SF-MPAA in 3 cases that is meshed radiation patches, meshed GND, and meshed radiation patches plus GND. And we investigated the characteristics of SF-MPAA depend on the variations of transparency in each case. In the case of meshed radiation patches, the gain decreased by 18.8% and the operating frequency is lower by 5.5%. In the case of meshed GND, the gain decreased by 15.4% and the operating frequency is lower by 5.56%. In the case of meshed radiation patches plus GND, the gain decreased by 31.94% and the operating frequency is lower by 7.6%. However, the bandwidth and the SLL(Side Lobe Level) did not show apparent tendency on the the variations of transparency.

Design of a 4×4 Phased Array Antenna with High Sidelobe Charactericstic for Millimeter-Wave Band 5G Dedicated Network Services (밀리미터파 대역 5G 특화망 서비스를 위한 고부엽 특성의 4×4 위상배열안테나 설계)

  • Myeong-Jun Oh;Jung-Ick Moon;Jung-Nam Lee;Young-Bae Jung
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.303-309
    • /
    • 2024
  • This paper proposes a high-gain phased array antenna that can provide private network communication services for large office spaces, factories, and other large-scale facilities, specifically designed for millimeter-wave band 5G (5th generation) networks. The proposed antenna features a 4×4 array structure with eight sub-arrays, each consisting of a 1×2 series array. To achieve high side-lobe characteristics, an offset array structure is applied by shifting even-numbered rows by one unit, combined with power tapering to adjust the size of individual radiating elements. This design achieves a high side-lobe level (SLL) of 22.3 dB and a high gain of 18.1 dBi. Additionally, the antenna provides gain characteristics of at least 15.2 dBi and 17.4 dBi within the intended beam steering range of ±45° in the azimuth direction and ±10° in the elevation direction, ensuring smooth communication services over a wide service area.

Analysis of Arrayed Waveguide Grating Waveglength Filter using Wide Angle Beam Propagation Method (Wide Angle BPM 을 이용한 광도파로열 격자 파장 필터의 해석)

  • Park, Jun-O;Jeong, Yeong-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.2
    • /
    • pp.46-55
    • /
    • 2002
  • The key component to accomplish the WDM all optical network is an Arrayed Waveguide Grating(AWG) wavelength filter Numerical analysis is necessary for design and analysis of optical components like AWG wavelength filter. Beam Propagation Method(BPM) is the most widely-used method. In this paper, we analyze the difference between the paraxial BPM and the WA-BPM when they are applied to the analysis of InP/InGaAsP/InP AWG wavelength filter. The paraxial BPM is based on paraxial approximation, and the WA-BPM is based on the low order Pade approximant. The side lobe level(SLL) and insertion loss calculated from both methods are compared. The high order Pade approximant will to used to more accurate design and analysis of AWG.

Optimal Design of Conformal Array Transducers (곡면 배열 트랜스듀서의 최적 설계)

  • Kim, Hoe-Yong;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.51-61
    • /
    • 2012
  • In this research, we have analyzed the trend of radiation pattern variation in relation to the change of design variables such as source interval and source number for conformal array transducers arranged in equi-angle, equi-interval, and geodesic dome forms. Through statistical multiple regression analysis of the results, we derived functional forms of the side lobe level and the beamwidth in terms of the design variables. Futhermore, the structure of the array transducer was optimized to achieve the smallest side lobe level while satisfying the requirements on beam width by the GA (genetic algorithm) method. Based on the optimized results, we have determined the equi-interval form as the optimal array geometry among the three conformal array geometries.

The Radiation Characteristics of a Linear Phased Array Antenna using a Pin Array Patch Antenna as an Element (핀 배열 안테나를 단위 안테나로 사용한 선형 위상 배열 안테나의 방사 특성)

  • Kim, Tae-Young;Kim, Gun-Su;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.44-51
    • /
    • 2009
  • The radiation characteristics of a pin array patch antenna phased array are compared to those of a conventional patch antenna phased array. The performance of a pin array patch antenna phased array is much improved than that of a conventional patch antenna phased array because the mutual coupling between the adjacent pin array patch antennas is very small compared to that between the adjacent conventional patch antennas. The radiation characteristics of a pin array patch antenna phased array show the superior performance such as low variation of the gain of the main beam and the side lobe level for the variation of the direction of the main beam.

Optimized Design of Wide-Band Subarray Using a Genetic Algorithm (유전 알고리즘을 이용한 광대역 부배열 최적화 설계)

  • Kim, Doo-Soo;Lee, Dong-Koog;Kim, Seon-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.4
    • /
    • pp.415-423
    • /
    • 2012
  • This paper specifies on optimized design of wide-band subarray using a Genetic Algorithm. First wide-band radiator was designed at triangle lattice of infinite array structure. It is the radiator of notch type that has a wide-band characteristic of ratio 2:1 between maximum and minimum frequency satisfying active reflection coefficient under -10 dB at boresight. And a Genetic Algorithm was applied to optimize subarray partition of antenna consisting of 1,100 array elements. It was confirmed that an optimized subarray antenna has a 4.5-5.5 dB more improved maximum SLL (Side-Lobe Level) than regular subarray antenna.

Performance verification of Ka-Band Array Antenna using Near-Field Test Method (근접전계 시험 기법을 활용한 Ka-대역 배열안테나 성능 검증)

  • Kim, Youngwan;Kwon, Junbeom;Kang, Yeonduk;Park, Jongkuk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.105-111
    • /
    • 2019
  • In this paper, a performance analysis of waveguide broad-wall slot array antenna for millimeter-wave seeker in Ka-band was performed as using near-field measurement. The measurement of slot array antenna was conducted in both far-field and near-field. And the validation of near-field test in millimeter band was confirmed. It was confirmed that the beam pattern characteristics including beam width and side lobe level of the slot array antenna that performed the verification were the same. Differenced in the side lobe level of azimuth and elevation beam pattern were verified to be less than 1dB. Additionally, the new antenna aperture distribution was extracted as using back-projection method modifying the near-field data and then introduced the method conducting performance analysis of array antenna.