• Title/Summary/Keyword: Side wall machining

Search Result 11, Processing Time 0.029 seconds

Optimal Cutting Condition in Side Wall Milling Considering Form Accuracy (측벽 엔드밀 가공에서 형상 정밀도를 고려한 최적 절삭 조건)

  • 류시형;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.31-40
    • /
    • 2003
  • In this paper, optimal cutting condition to minimize the form error in side wall machining with a flat end mill is studied. Cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting such as roughing. Using the form error prediction method from tool deflection, optimal cutting condition considering form accuracy is investigated. Also, the effects of tool teeth number, tool geometry and cutting conditions on form error are analyzed. The characteristics and the difference of generated surface shape in up and down milling are discussed and over-cut free condition in up milling is presented. Form error reduction method through successive up and down milling is also suggested. The effectiveness and usefulness of the presented method are verified from a series of cutting experiments under various cutting conditions. It is confirmed that form error prediction from tool deflection in side wall machining can be used in optimal cutting condition selection and real time surface error simulation for CAD/CAM systems. This study also contributes to cutting process optimization for the improvement of form accuracy especially in precision die and mold manufacturing.

Tool Deflection and Geometrical Accuracy in Side Wall Milling (측벽 밀링에서 공구 변형 및 형상 정밀도)

  • 류시형;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1811-1815
    • /
    • 2003
  • Investigated is the relationship between tool deflection and geometrical accuracy in side wall machining. Form error is predicted directly from the tool deflection without surface generation. Developed model can predict the surface form error about three hundred times faster than the previous method. Cutting forces and tool deflection are calculated considering tool geometry, tool setting error, and machine tool stiffness. The characteristics and the difference of generated surface shape in up milling and down milling are discussed. The usefulness of the presented method is verified from a set of experiments under various cutting conditions generally used in die and mold manufacture. This study contributes to real time surface shape estimation and cutting process planning for the improvement of geometrical accuracy.

  • PDF

Form Error Prediction in Side Wall Milling Considering Tool Deflection (측벽 엔드밀 가공에서 공구 변형을 고려한 형상 오차 예측)

  • 류시형;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.43-51
    • /
    • 2004
  • A method for form error prediction in side wall machining with a flat end mill is suggested. Form error is predicted directly from the tool deflection without surface generation by cutting edge locus with time simulation. Developed model can predict the surface form error about three hundred times faster than the previous method. Cutting forces and tool deflection are calculated considering tool geometry, tool setting error and machine tool stiffness. The characteristics and the difference of generated surface shape in up milling and down milling are discussed. The usefulness of the presented method is verified from a set of experiments under various cutting conditions generally used in die and mold manufacturing. This study contributes to real time surface shape estimation and cutting process planning for the improvement of form accuracy.

A 4-axis NC Lettering System for the Side-wall of the Automobile Tire (타이어 사이드판의 문자 가공을 위한 4축 가공 시스템)

  • Lee, Cheol-Soo;Park, Gwang-Ryeol
    • IE interfaces
    • /
    • v.11 no.2
    • /
    • pp.65-78
    • /
    • 1998
  • The letters of the automobile tire are usually engraved on the side-wall. The shape of the side-wall is a sculptured surface generated by the rotational sweeping of a profile curve. The letters laid on the side-wall are usually designed by a 2-dimensional CAD. It is impossible to machine the letters on the surface accurately by 3-axis NC machining, because the axis of cutter should be tilted to align with the normal vector of the surface. In this case. the degree of freedom for the machine is at least four. This paper describes an idea for tool path generation of a 4-axis machine by using the 2-dimensional CAD data of the letters and the surface of the side-wall. This study includes the following procedures; (1) measuring the profile of the side-wall surface and curve-fitting of the measured points. (2) the 'non-parallel projection' of the letters on the side-wall, and (3) an inverse kinematics of the 4-axis lettering machine. Procedures in this paper are programmed in C-language on Windows95 environment. With a PC based CNC controller and a 4-axis lettering machine. these are tested sucessfully for the practical use.

  • PDF

Design of Ultrasonic Vibration Device using PZT Actuator for Precision Laser Machining (압전구동기를 이용한 정밀 가공용 초음파 진동장치 설계)

  • Kim, W.J.;Fei, L.;Cho, S.H.;Park, J.K.;Lee, M.G.
    • Laser Solutions
    • /
    • v.14 no.2
    • /
    • pp.8-12
    • /
    • 2011
  • As the aged population grows around the world, many medical instruments and devices have been developed recently. Among the devices, a drug delivery stent is a medical device which requires precision machining. Conventional drug delivery stent has problems of residual polymer and decoating because the drug is coated on the surface of stent with the polymer. If the drug is impregnated in micro hole array on the surface of the stent, the problem can be solved. Micro sized holes are generally fabricated by laser machining; however, the fabricated holes do not have an enough aspect ratio to contain the drug or a good surface finish to deliver it to blood vessel tissue. To overcome these problems, we propose a vibration-assisted machining mechanism with PZT (Piezoelectric Transducers) for the fabrication of micro sized holes. If the mechanism vibrates the eyepiece of the laser machining head, the laser spot on the workpiece will vibrate vertically because objective lens in the eyepiece shakes by the mechanism's vibration. According to the former researches, the vibrating frequency over 20kHz and amplitude over 500nm are preferable. The vibration mechanism has cylindrical guide, hollowed PZT and supports. In the cylinder, the eyepiece is mounted. The cylindrical guide has upper and low plates and side wall. The shape of plates and side wall are designed to have high resonating frequency and large amplitude of motion. The PZT also is selected to have high actuating force and high speed of motion. The support has symmetrical and rigid characteristics.

  • PDF

Micro-machining Characteristics using Focused Ion Beam (집속이온빔에 의한 미세가공 특성)

  • 이종항;박철우;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.636-639
    • /
    • 2003
  • It is difficult to machine below 10 micrometers by conventional machining methods, such as micro-EDM. However, ultra micro machining using focused ion beam(FIB) is able to machine to 50 nanometers. In addition, 3 dimensional structures can be made by a combination of FIB and CVD to the level of 10 nanometers. Die & moulds techniques are better than one-to-one machining techniques in the mass production of ultra size structures, in regards to production costs. In this case, the machining precision of die & moulds affects produced parts. Also, it is advantageous to machine die & moulds to the 10 micrometer level by FIB technique rather than other techniques. In this paper, the grooving characteristics for die & mould materials by FIB were carried out experimentally in order to compare the machining characteristics of FIB with conventional machining methods. The results showed that the machining parameters and the scanning path of FIB affects the precision. The machined width and depth of the groove varied depending on the required depth due to the redeposition of the sputtered ion material accumulating on both the bottom and the side of the wall.

  • PDF

A Study on the Working Condition Effecting on the Maximum Working Temperature and Surface Roughness in Side Wall End Milling Using Design of Experiment (실험계획법을 이용한 엔드밀 가공 시 최대가공온도와 표면조도에 미치는 가공조건에 관한 연구)

  • Hong, Do-Kwan;Ahn, Chan-Woo;Baek, Hwang-Soon;Choi, Seok-Chang;Park, Il-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.46-53
    • /
    • 2009
  • To find the working condition is one of the important factors in precision machining. In this study, we analyzed maximum working temperature by infra-red camera and surface roughness in side wall end milling using design of experiment (DOE): RSM(response surface methodology), ANOM(analysis of means) and ANOVA(analysis of variance) by table of orthogonal array. ANOM and ANOVA are well adapted to select sensitivity of design variables for maximum working temperature and surface roughness. The effective design variables and their levels should be determined using ANOM, ANOVA. RSM is presented 2nd order approximation polynomial of maximum working temperature and surface roughness is composed with design variables. Therefore, it is expected that the proposed procedure using design of experiment : table of orthogonal array, ANOM, ANOVA and RSM can be easily utilized to solve the problem of working condition.

  • PDF

Development of Vibration Assisted Hybrid Femtosecond Laser Ultra-precision Machining System and Cu-Zn alloy Application (진동자를 이용한 하이브리드 극초단 펄스 레이저 초정밀가공시스템 개발 및 Cu-Zn합금 응용)

  • Choi, Won-Suk;Yoon, Ji-Wook;Cho, Sung-Hak;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.308-312
    • /
    • 2013
  • In this paper, we describe experiment results using a vibration assisted hybrid femtosecond laser (${\lambda}$:795 nm) ultra-precision machining system. The hybrid system we have developed is possible that optical focal point of the femtosecond laser constantly and frequently within the range of PZT(piezoactuator) vibrator working distance. Using the hybrid system, We have experimented on brass and studied about differences of result of hole aspect ratio compare to general experiment setup of femtosecond laser system. Aspect ratio of a micro hole on brass is increased as 54% with 100 Hz vibration frequency and surface roughness of the side wall also improved compare to non-vibration.

Machining Characteristics of Hemisphere Shape by Ball Endmilling (볼엔드밀가공에 의한 구면형상의 가공특성)

  • Wang, Duck Hyun;Kim, Won Il;Lee, Yun Kyeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.5-14
    • /
    • 2002
  • Hemisphere shapes were machined for different tool paths and machining conditions with ball endmill cutters. It was also found out how feedrate affect the precision of the machining and also tried to study the most suitable feedrate in specific cutting condition. Tool deflection, cutting forces and shape accuracy were measured according to the inclination position of the sculptured surface. As the decreasing of inclination position angle, the tool deflection was increased due to the decreased cutting speed when the cutting edge is approaching toward the center. Tool deflection when upward cutting IS obtained less than that of downward cutting and down-milling in upward cutting showed the least tool deflection for the sculptured surface. For down-milling, the cutting resistance of the side wall direction is larger than that of feed direction. It was found that the tool deflection is getting better as tool path is going to far from the center for convex surface.

  • PDF

A Study on Feed Rate Optimization in the Ball End-milling Process Regarding of Tool Path and Workpiece Shape (볼 엔드밀을 이용한 금형가공에 있어서 이송 속도 최적화에 대한 연구)

  • 김성윤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.102-106
    • /
    • 1996
  • In the ball end-milling process of a 3-dimensional mold, it is important to select cutting conditions and tool path considering the geometrical shape of a workpiece to reduce machining time. In this study, experiments were performed to decide allowable feed rate not breaking stability of system for different geometrical shapes. It was found that downcut is more stable than upcutting in machining side wall and downward is preferable to upward in inclined part depending on the angle of the inclination and depth of cut.

  • PDF