• Title/Summary/Keyword: Side Impact Characteristics

Search Result 162, Processing Time 0.023 seconds

Axial Impact Collapse Analysis on Hat-shaped Members by FEM (FEM에 의한 단일모자형 단면부재의 축방향 충격압궤 해석)

  • Cha, Cheon-Seok;Gang, Jong-Yeop;Yang, In-Yeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.129-136
    • /
    • 2000
  • In the frontal collision the spot welded hat-shaped section side member is the fundamental structure for automobiles and has a great amount of absorbing capacity. For this reason LS-DYNA3D has been used for analyzing impact collapse characteristics on hat shaped section member with respect to the valuables; thickness, width ratio and spot weld potch on impact load(7.19m/sec, 1034J). By comparing the results from simulation and the experimental results, the utilization of simulation has been certified.

  • PDF

The Accident and Injury Characteristics of Elderly Drivers on Lateral Impact (고령 운전자 측면충돌 사고 및 상해특성)

  • Hong, Seung-Jun;Park, Won-Pil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.104-113
    • /
    • 2010
  • Domestic insurance claims were statistically investigated to analyze the elderly driver's accident patterns and injury types in side impact crashes. Medical treatment records and accident vehicle damage photos have been surveyed for 5,419 cases. The results of our statistical analysis showed that the thorax injury risk of the elderly drive group is 8.8 and 4.0 times higher than that of the young and middle age group respectively. Diagnosis showed that most thorax injuries were caused by rib fracture. The head injury risk of the elderly female driver group seemed to be higher than that of the younger female driver group, however, statistical test has not been conducted because of the lack of number of samples for elderly female accident.

A Study on the Impact-Induced Damage in CFRP Angle-ply Laminates (CFRP 사교적층판의 충격손상에 관한 연구)

  • 배태성;입야영;양동률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.237-247
    • /
    • 1993
  • Carbon fiber reinforced plastics(CFRP) have gained increased application in aerospace structures because of their specific strength and stiffness, but are sensitive to impact-induced damage. An experimental investigation was carried out to evaluate the impact resistance of CFRP according to the ply angle. The specimens of angle ply laminate composites were employed with [0.deg. $_{6}$/ .deg.$_{10}$/0.deg.$_{6}$], in which 6 kinds of ply angle such as .deg.=15.deg., 30.deg., 45.deg., 60.deg., 75.deg. and 90.deg. were selected. The impact tests were conducted using the air gun type impact testing machine by steel balls of diameter of 5 mm and 10 mm, and impact-induced damages were evaluated under same impact speed of V=60m/s. The impact damaged zones were observed through a scanning acoustic microscope (SAM). The obtained results were summarized as follows: (1) Delaminations on the interfacial boundaries showed th directional characteristics to the fiber directions. The delamination area on the impact side (interface A) was considerably smaller compared to that of the opposite side (interface B). (2) Cracks corresponding to other delaminations than those mentioned in SAM photographs were also seen on the impact damaged zone. (3) The delamination patterns were affected by the ply-angle, the dimensions of the specimen, and the boundary conditions. (4) The impact damaged zone showed zone showed the delamination on the interfacial boundaries, transverse shear cracks of the surface layer, and bending cracks of the bottom layer.r.r.r.

An Experimental Study on the Axial Collapse Characteristics of Hat and Double Hat Shaped Section Members at Various Velocities

  • Cha, Cheon-Seok;Chung, Jin-Oh;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.924-932
    • /
    • 2004
  • In this study, the axial collapse tests were performed under either static (or quasi-static) or impact loads with several collapse velocities based on the expectation that para-closed sections of the front-end side members (spot welded hat and double hat shaped section members) would show quite different collapse characteristics from those for seamless section. The test results showed that both of the hat and double hat shaped section members failed in the stable sequential collapse mode in the static or quasi-static collapse tests, while the double hat shaped section members underwent the unstable collapse mode especially when the impact velocity is high. The mean collapse loads in the hat shaped section members increase with collapse velocity for all the cases of the static, quasi-static, and impact collapse tests. In the double hat shaped section members, however, the mean collapse loads decrease with increase in collapse velocity in the impact tests.

Impact energy absorption characteristics for metal and composite members (금속 및 복합재료 충격흡수부재의 에너지흡수특성 비교연구)

  • 전완주
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.15-21
    • /
    • 1993
  • 본 연구에서는 자동차 차체의 경량화 방안으로서 섬유강화 복합재료를 이용한 충격흡ㅅ수 구조재인 Side Member(측면부재)의 응용을 위한 시뮬레이션용 Box Tube의 충돌에너지 흡수특성 및 거동에 대해서 기존 금속 측면부재와 비교하여 논의해 보고자 한다. 1. 금속 충돌흡수 부재의 붕괴거동. 2. 복합재료 충격흡수부재의 붕괴거동.

  • PDF

Vibration Characteristics of the Floor Structures Inserted with Damping Materials (제진재가 삽입된 바닥 구조의 진동특성에 대한 실험연구)

  • Jeon, Jin-Yong;Jeong, Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1036-1043
    • /
    • 2006
  • Damping materials for reducing heavy-weight floor impact noise in reinforced concrete structures were tested in apartment buildings. The effect of damping materials and an impact isolator were compared with an on-site experiment conducted in a high-rise apartment building. The loss factor of damping material analyzed more than 2 times than rubber to $1.5{\sim}2.3$, could know that Damping layer has excellent attenuation performance in side of vibration reduction. The results showed that the resonance frequency increased but vibration acceleration level decreased when the damping materials were used. The heavy-weight impact sound levels of the structure decreased substantially at 63 Hz, whereas the sound levels of the structure with the impact isolator increased.

Strength and Impact Damage Characteristics of A17075/CFRP Sandwitch Pannel by Using Automobiles (자동차용 경량화 A17075 / CFRP 샌드위치 판넬의 강도와 충격손상 특성)

  • Yoon, Han-Ki;Lee, Jong-Ho;Park, Yi-Hyun;Lee, Je-Heon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.295-300
    • /
    • 2002
  • To establish an optimum condition in the surface treatment and curing process will be an important parameters for the fabrication of multilayered hybrid composite materials, A17075/CFRP (CARALL : carbon fiber reinforce aluminum laminates). Effects of carbon fiber direction and thickness variation in tensile strength were investigated. And impact damage behavior of carbon fiber reinforce plastic (CFRP) and CARALL were investigated also, it was found that a partial stress increase in order of epoxy adhesive, A17075, CFRP. And the partial stress of CFRP carried out a great portion of applied stress. The impact damage resistance of CARALL was higher than that of CFRP. This is because both side Al sheet of CARALL absorb a great of impact damage.

  • PDF

Study on the Cold Stamping Process Design Method of 1.5GPa Grade Front Side Rear Lower Member (1.5GPa급 Front Side Rear Lower Member 냉간 성형공정 설계기법 연구)

  • Nam, S.W.;Bae, G.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.5
    • /
    • pp.236-241
    • /
    • 2021
  • This study describes the cold stamping process design procedure to secure the formability and dimensional accuracy of the automotive structural component fabricated by 1.5GPa grade ultra-high strength steel sheet. The target product is selected as the front side rear lower member which is the most important energy absorption part in the frontal impact condition. To secure the product quality, an intermediate product shape is added while considering the low elongation and high strength characteristics of 1470Mart. The sequential optimization procedure of the intermediate product shape, the fine dimensional quality is then achieved without any crack or wrinkling. The cold stamping method with ultra-high strength steel sheets is validated by conducting the die tryout of the front side rear lower member.

Investigation on Vibration Characteristics and Structural Reciprocity of Heunginjimun (흥인지문의 진동특성 및 상반성 분석)

  • Choi, Jae-Sung;Lee, Sung-Kyung;Min, Kyung-Won;Yoon, Weon-Kyu;Kim, Derk-Moon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.4
    • /
    • pp.338-347
    • /
    • 2010
  • Heunginjimun designated as a Treasure No.1 is a two-story wooden structure with 5 bay and 2 bay in its front and side views, respectively. This paper presents an investigation on vibration characteristics of Heunginjimun through both ambient vibration and impact hammer tests. Ambient vibration test was performed to identify the natural frequency of Heunginjimun from the spectrum analysis of time history. Impact hammer test was undertaken to find the frequency of Heunginjimun which is affected by the surrounding traffics and to verify the reciprocal principle for the wooden structural system. Ambient vibration test results of Heunginjimun showed that the natural frequencies in two principal axes 1.5 Hz and 1.1 Hz, respectively. It was confirmed from impact hammer tests for a ground that the frequency of 4.2 Hz is caused by the traffics surrounding Heunginjimun. It was also observed that from the impact hammer test results between two locations in Heunginjimun that the transfer functions measured from two corresponding locations coincided well with each other. This result shows that the wooden structural system is globally linear, and the reciprocal principle is established.

A Study on Characteristics of Damageability and Repairability with Similar Platform Type at Low Speed 40% Offset Crash Test (동일 플렛폼 차량에 대한 저속 충돌시 손상성 수리성에 미치는 영향에 관한 연구)

  • Lim, Jong-Hun;Park, In-Song;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.108-113
    • /
    • 2005
  • The damageability and repairability of similar platform type vehicles could be very concerned with design optimization. In all the vehicles crash tested, small size passenger vehicles were weakness in aspect of damageability and repairability. The most critical area appears to be repair cost considering that parts cost is the largest portion of total repair cost segments. Besides repair cost, attaching method of front sidemember and subframe are placed special importance for impact energy absorption and damageability and repairability. So in order to improve damageability and repairability of vehicle structure and body component of the monocoque type passenger vehicles, the end of front side member and front back beam should be designed with optimum level and to supply the end of front side member as a partial condition approx 300mm. The effectiveness of design concept on the 40% offset frontal impact characteristics of the passenger vehicle structure is investigated and summarized.