• 제목/요약/키워드: SiRNA

검색결과 631건 처리시간 0.025초

Etoposide에 의한 인간 망막색소상피세포인 ARPE-19 세포의 아폽토시스 과정에서 Heme oxygenase-1의 항아폽토시스 기능에 대한 연구 (Anti-apoptotic Activity of Heme Oxygenase-1 Up-regulated by Etoposide in Human Retinal Pigment Epithelial Cells)

  • 이상권;송주동;김강미;김종민;이상률;유영현;박영철
    • 생명과학회지
    • /
    • 제17권9호통권89호
    • /
    • pp.1204-1210
    • /
    • 2007
  • Totopoisomerase II 저해제인 etoposide는 핵안에 DNA double strand breaks를 일으키므로써 세포의 DNA에 손상을 초래한다. 본 연구에서는 인간 망막색소상피세포인 ARPE-19 세포에서의 세포성장 및 아폽토시스에서 etoposide의 역할을 살펴보았다. Etoposide는 세포의 성장을 크게 감소시켰으며 TUNEL에서 아폽토시스를 나타내는 DNA fragmentation의 증가를 유도하였다. 게다가, etoposide는 산화적 손상에 대해 세포나 조직을 보호하는 역할을 하는 것으로 알려진 세포내 항산화효소인 heme oxygenase-1 (HO-1)의 발현을 크게 증가시켰다. Etoposide에 의한 HO-1 발현증가는 항산화물질 NAC에 의해 억제되었는데, 이는 etoposide에 의한 세포내 ROS의 증가가 HO-1 발현에 중요한 역할을 한다는 것을 의미한다. 또한 HO-1 발현을 억제하기 위하여 HO-1 siRNA 방법을 사용하였다. 흥미롭게도, HO-1 유전자의 knock-down은 etoposide에 의해 유도되는 DNA fragmentation의 정도를 증가시켰다. 이들 결과를 종합해볼 때, etoposide에 의해 자극되어진 ARPE-19 세포에서 발현증가된 HO-1은 etoposide에 의한 아폽토시스 유발과정에서 세포를 보호하는 항아폽토시스의 기능을 한다는 것을 시사한다.

캐너비노이드 수용체 CB2의 신호전달작용에 미치는 RGS3의 억제적 효과 (RGS3 Suppresses cAMP Response Element (CRE) Activity Mediated by CB2 Cannabinoid Receptor in HEK293 Cells)

  • 김성대;이휘민;메하리 엔델;조재열;박화진;오재욱;이만휘
    • 생명과학회지
    • /
    • 제19권11호
    • /
    • pp.1506-1513
    • /
    • 2009
  • RGS단백질은 G 단백질 신호전달작용에 있어서 신호를 억제하는 조절단백질로서 G 단백질 매개수용체(GPCR)의 활성을 억제하는 것으로 알려졌다. 그렇지만 캐너비노이드 수용체 CB2의 활성에 있어서 RGS 단백질의 조절효과에 관해서는 지금까지 알려져 있지 않다. 그러므로 본 연구에서 우리는 RGS2, 3, 4, 5와 캐너비노이드 수용체 CB2 cDNA를 동시에 HEK293 세포주에 발현시킨 후 각 RGS 단백질의 효과를 조사하였다. CB2 단백질을 발현하는 HEK293 세포주(CB2-HEK293)에서 CB2 효현제인 WIN55,212-2는 폴스콜린으로 유도된 cAMP response element (CRE) 활성을 억제하였다. 이러한 WIN55,212-2의 CRE 억제 활성은 RGS3에 의하여 차단되었지만 RGS2, 4, 및 RGS5에서는 관찰되지 않았다. 뿐만 아니라 RGS3 small interference RNA (siRNA)를 사용하여 내인성 RGS3 단백질의 발현을 저하시키면 WIN55,212-2에 의한 폴스콜린 유도 CRE 억제활성은 더욱 증강되었다. 이상의 결과는 캐너비노이드 수용체 CB2 신호전달작용에 있어서 RGS 단백질의 기능적 역할과 특히 내인성 RGS3의 캐너비노이드 수용체 CB2에 대한 선택적 작용을 나타낸다.

20S-Protopanaxadiol, an aglycosylated ginsenoside metabolite, induces hepatic stellate cell apoptosis through liver kinase B1-AMP-activated protein kinase activation

  • Park, Sang Mi;Jung, Eun Hye;Kim, Jae Kwang;Jegal, Kyung Hwan;Park, Chung A;Cho, Il Je;Kim, Sang Chan
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.392-402
    • /
    • 2017
  • Background: Previously, we reported that Korean Red Ginseng inhibited liver fibrosis in mice and reduced the expressions of fibrogenic genes in hepatic stellate cells (HSCs). The present study was undertaken to identify the major ginsenoside responsible for reducing the numbers of HSCs and the underlying mechanism involved. Methods: Using LX-2 cells (a human immortalized HSC line) and primary activated HSCs, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) assays were conducted to examine the cytotoxic effects of ginsenosides. $H_2O_2$ productions, glutathione contents, lactate dehydrogenase activities, mitochondrial membrane permeabilities, apoptotic cell subpopulations, caspase-3/-7 activities, transferase dUTP nick end labeling (TUNEL) staining, and immunoblot analysis were performed to elucidate the molecular mechanism responsible for ginsenoside-mediated cytotoxicity. Involvement of the AMP-activated protein kinase (AMPK)-related signaling pathway was examined using a chemical inhibitor and small interfering RNA (siRNA) transfection. Results and conclusion: Of the 11 ginsenosides tested, 20S-protopanaxadiol (PPD) showed the most potent cytotoxic activity in both LX-2 cells and primary activated HSCs. Oxidative stress-mediated apoptosis induced by 20S-PPD was blocked by N-acetyl-$\text\tiny L$-cysteine pretreatment. In addition, 20S-PPD concentration-dependently increased the phosphorylation of AMPK, and compound C prevented 20S-PPD-induced cytotoxicity and mitochondrial dysfunction. Moreover, 20S-PPD increased the phosphorylation of liver kinase B1 (LKB1), an upstream kinase of AMPK. Likewise, transfection of LX-2 cells with LKB1 siRNA reduced the cytotoxic effect of 20S-PPD. Thus, 20S-PPD appears to induce HSC apoptosis by activating LKB1-AMPK and to be a therapeutic candidate for the prevention or treatment of liver fibrosis.

LncRNA H19 Drives Proliferation of Cardiac Fibroblasts and Collagen Production via Suppression of the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β Axis

  • Guo, Feng;Tang, Chengchun;Huang, Bo;Gu, Lifei;Zhou, Jun;Mo, Zongyang;Liu, Chang;Liu, Yuqing
    • Molecules and Cells
    • /
    • 제45권3호
    • /
    • pp.122-133
    • /
    • 2022
  • The aim of this study was to investigating whether lncRNA H19 promotes myocardial fibrosis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis. Patients with atrial fibrillation (AF) and healthy volunteers were included in the study, and their biochemical parameters were collected. In addition, pcDNA3.1-H19, si-H19, and miR-29a/b-3p mimic/inhibitor were transfected into cardiac fibroblasts (CFs), and proliferation of CFs was detected by MTT assay. Expression of H19 and miR-29a/b-3p were detected using real-time quantitative polymerase chain reaction, and expression of α-smooth muscle actin (α-SMA), collagen I, collagen II, matrix metalloproteinase-2 (MMP-2), and elastin were measured by western blot analysis. The dual luciferase reporter gene assay was carried out to detect the sponging relationship between H19 and miR-29a/b-3p in CFs. Compared with healthy volunteers, the level of plasma H19 was significantly elevated in patients with AF, while miR-29a-3p and miR-29b-3p were markedly depressed (P < 0.05). Serum expression of lncRNA H19 was negatively correlated with the expression of miR-29a-3p and miR-29b-3p among patients with AF (rs = -0.337, rs = -0.236). Moreover, up-regulation of H19 expression and down-regulation of miR-29a/b-3p expression facilitated proliferation and synthesis of extracellular matrix (ECM)-related proteins. SB431542 and si-VEGFA are able to reverse the promotion of miR-29a/b-3p on proliferation of CFs and ECM-related protein synthesis. The findings of the present study suggest that H19 promoted CF proliferation and collagen synthesis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis, and provide support for a potential new direction for the treatment of AF.

Sevoflurane Postconditioning Reduces Hypoxia/Reoxygenation Injury in Cardiomyocytes via Upregulation of Heat Shock Protein 70

  • Zhang, Jun;Wang, Haiyan;Sun, Xizhi
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권8호
    • /
    • pp.1069-1078
    • /
    • 2021
  • Sevoflurane postconditioning (SPostC) has been proved effective in cardioprotection against myocardial ischemia/reperfusion injury. It was also reported that heat shock protein 70 (HSP70) could be induced by sevoflurane, which played a crucial role in hypoxic/reoxygenation (HR) injury of cardiomyocytes. However, the mechanism by which sevoflurane protects cardiomyocytes via HSP70 is still not understood. Here, we aimed to investigate the related mechanisms of SPostC inducing HSP70 expression to reduce the HR injury of cardiomyocytes. After the HR cardiomyocytes model was established, the cells transfected with siRNA for HSP70 (siHSP70) or not were treated with sevoflurane during reoxygenation. The lactate dehydrogenase (LDH) level was detected by colorimetry while cell viability and apoptosis were detected by MTT and flow cytometry. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blotting were used to detect HSP70, apoptosis-, cell cycle-associated factors, iNOS, and Cox-2 expressions. Enzyme-linked immuno sorbent assay (ELISA) was used to measure malondialdehyde (MDA) and superoxide dismutase (SOD). SPostC decreased apoptosis, cell injury, oxidative stress and inflammation and increased viability of HR-induced cardiomyocytes. In addition, SPostC downregulated Bax and cleaved caspase-3 levels, while SPostC upregulated Bcl-2, CDK-4, Cyclin D1, and HSP70 levels. SiHSP70 had the opposite effect that SPostC had on HR-induced cardiomyocytes. Moreover, siHSP70 further reversed the effect of SPostC on apoptosis, cell injury, oxidative stress, inflammation, viability and the expressions of HSP70, apoptosis-, and cell cycle-associated factors in HR-induced cardiomyocytes. In conclusion, this study demonstrates that SPostC can reduce the HR injury of cardiomyocytes by inducing HSP70 expression.

Estrogen Receptor-α Mediates the Effects of Estradiol on Telomerase Activity in Human Mesenchymal Stem Cells

  • Cha, Young;Kwon, Su Jin;Seol, Wongi;Park, Kyung-Soon
    • Molecules and Cells
    • /
    • 제26권5호
    • /
    • pp.454-458
    • /
    • 2008
  • Sex steroid hormone receptors play a central role in modulating telomerase activity, especially in cancer cells. However, information on the regulation of steroid hormone receptors and their distinct functions on telomerase activity within the mesenchymal stem cell are largely unavailable due to low telomerase activity in the cell. In this study, the effects of estrogen ($E_2$) treatment and function of estrogen receptor alpha ($ER{\alpha}$) and estrogen receptor beta ($ER{\beta}$) on telomerase activity were investigated in human mesenchymal stem cells (hMSCs). Telomerase activity and mRNA expression of the catalytic subunit of telomerase (hTERT) were upregulated by treatment of the cells with $E_2$. The protein concentration of $ER{\alpha}$ was also increased by $E_2$ treatment, and enhancement of $ER{\alpha}$ accumulation in the nucleus was clearly detected with immunocytochemistry. When $ER{\alpha}$ expression was reduced by siRNA transfection into hMSCs, the effect of $E_2$ on the induction of hTERT expression and telomerase activity was diminished. In contrast, the transient overexpression of $ER{\alpha}$ increased the effect of $E_2$ on the expression of hTERT mRNA. These findings indicate that the activation of hTERT expression and telomerase activity by $E_2$ in hMSCs depends on $ER{\alpha}$, but not on $ER{\beta}$.

Ribosomal Protein L19 and L22 Modulate TLR3 Signaling

  • Yang, Eun-Jeong;Seo, Jin-Won;Choi, In-Hong
    • IMMUNE NETWORK
    • /
    • 제11권3호
    • /
    • pp.155-162
    • /
    • 2011
  • Background: Toll-like receptor 3 (TLR3) recognizes double-stranded RNA (dsRNA) and induces inflammation. In this study we attempted to ascertain if there are endogenous host molecules controlling the production of cytokines and chemokines. Two candidates, ribosomal protein L19 and L22, were analyzed to determine if they influence cytokine production followed by TLR3 activation. In this study we report that L19 acts upon production of IP-10 or IL-8 differently in glioblastoma cells. Methods: L19 or L22 was transfected into HEK293-TLR3, A549 or A172 cells. After treatment with several inhibitors of NF-${\kappa}B$, PI3K, p38 or ERK, production of IL-8 or IP-10 was measured by ELISA. siRNA was introduced to suppress expression of L19. After Vesicular stomatitis virus infection, viral multiplication was measured by western blot. Results: L19 increased ERK activation to produce IL-8. In A172 cells, in which TLR3 is expressed at endosomes, L19 inhibited interferon regulatory factor 3 (IRF3) activation and IP-10 production to facilitate viral multiplication, whereas L19 inhibited viral multiplication in A549 cells bearing TLR3 on their cell membrane. Conclusion: Our results suggest that L19 regulates TLR3 signaling, which is cell type specific and may be involved in pathogenesis of autoimmune diseases and chronic inflammatory diseases.

HMGB1 regulates autophagy through increasing transcriptional activities of JNK and ERK in human myeloid leukemia cells

  • Zhao, Mingyi;Yang, Minghua;Yang, Liangchun;Yu, Yan;Xie, Min;Zhu, Shan;Kang, Rui;Tang, Daolin;Jiang, Zhigang;Yuan, Wuzhou;Wu, Xiushan;Cao, Lizhi
    • BMB Reports
    • /
    • 제44권9호
    • /
    • pp.601-606
    • /
    • 2011
  • HMGB1 is associated with human cancers and is an activator of autophagy which mediates chemotherapy resistance. We here show that the mRNA levels of HMGB1 are high in leukemia cells and it is involved in the progression of childhood chronic myeloid leukemia (CML). HMGB1 decreases the sensitivity of human myeloid leukemia cells K562 to anti-cancer drug induced death through up-regulating the autophagy pathway, which is confirmed by the observation with an increase in fusion of autophagosomes and autophagolysosomes. When overexpressing HMGB1, both mRNA levels of Beclin-1, VSP34 and UVRAG which are key genes involved in mammalian autophagy and protein levels of p-Bcl-2 and LC3-II are increased. Luciferase assays document that over-expression of HMGB1 increases the transcriptional activity of JNK and ERK, which may be silenced by siRNA. The results suggest that HMGB1 regulates JNK and ERK required for autophagy, which provides a potential drug target for therapeutic interventions in childhood CML.

Molecular Identification of Sarcocystis grueneri in Wild Korean Water Deer (Hydropotes inermis argyropus)

  • Kim, Hye-won;Kim, Hyeon-Cheol;Ryu, Si-Yun;Choi, Kyoung-Seong;Yu, Do-Hyeon;Park, Jinho;Chae, Joon-Seok;Park, Bae-Keun
    • Parasites, Hosts and Diseases
    • /
    • 제56권2호
    • /
    • pp.129-134
    • /
    • 2018
  • The cysts of Sarcocystis grueneri were detected and characterized from the cardiac muscles of the Korean water deer (Hydropotes inermis argyropus). Of the 38 heart muscle samples examined by light microscopy, 10 were found infected with the cysts of Sarcocystis sp. The cysts appeared oval to spherical shape and measured $110-380{\mu}m$ in length and $90-170{\mu}m$ in width. A phylogenetic tree of the 18S rRNA sequences (1.5 kb) revealed a close relationship of the infected cysts to genus Sarcocystis. The 18S rRNA sequence of the infected cysts showed 100% identity to S. grueneri and 97% to S. capracanis. Here, we first report the S. grueneri infections in the Korean water deer.

Effect of Diallyl Trisulfide on Human Ovarian Cancer SKOV-3/DDP Cell Apoptosis

  • Wan, Hui-Fang;Yu, Le-Han;Wu, Jin-Lan;Tu, Shuo;Zhu, Wie-Feng;Zhang, Xia-Li;Wan, Fu-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권12호
    • /
    • pp.7197-7201
    • /
    • 2013
  • Aim: To investigate the effects of diallyl trisulfide (DT) on apoptosis of cisplatin (DDP)-resistant human epithelial ovarian cancer SKOV-3 cells (SKOV-3/DDP), and the role of p53 upregulated modulator of apoptosis (PUMA). Methods: SKOV-3/DDP cells were randomly divided into control, DT, DPP and DPP+DT groups, which were treated with DT or combined DT and DDP. All cells were incubated for 48 h. and apoptosis rates were assessed by flow cytometry. mRNA and protein expression of PUMA, Bax and Bcl-2 was determined by RT-PCR and Western blot assays, respectively. Results: Compared with control group, the apoptosis rates of SKOV-3/DDP cells in DT groups were obviously increased, with dose-dependence (P < 0.05), the mRNA and protein expressions of PUMA, Bax also being up-regulated (P < 0.05), while those of Bcl-2 were down-regulated (P < 0.05). Compared with DT groups, the apoptosis rate in the DDP+DT group was significantly increased (P < 0.05). After knockdown of PUMA with specific siRNA, the apoptosis rate of SKOV-3/DDP cells was obviously decreased (P < 0.05). Conclusion: DT can promote the apoptosis of SKOV-3/DDP cells with PUMA playing a critical role.