• 제목/요약/키워드: SiRNA

검색결과 635건 처리시간 0.027초

인간 신장암 Caki세포에서 dicumarol에 의한 PMA 매개 matrix metalloproteinase-9의 발현 억제 효과 (Dicumarol Inhibits PMA-Induced MMP-9 Expression through NQO1-independent manner in Human Renal Carcinoma Caki Cells)

  • 박은정;권택규
    • 생명과학회지
    • /
    • 제26권2호
    • /
    • pp.174-180
    • /
    • 2016
  • Dicumarol는 전동싸리 식물에서 추출한 coumarin 유도체로 vitamin K 의존적으로 항응고 작용를 한다. 그러나, dicumarol에 의한 MMP-9의 발현 및 활성화 조절에 대한 연구는 수행되지 않았다. 본 연구에서 dicumarol이 인간 신장암 Caki세포에서 PMA 매개의 MMP-9의 발현과 활성화를 조절 할 수 있는지 확인하였다. Dicumarol는 PMA유도 MMP-9의 활성을 억제하였고, MMP-9의 mRNA RT-PCR 및 promoter assay를 통하여 전사단계에서 조절됨을 확인하였다. Dicumarol에 의한 MMP-9 발현 조절에 NF-κB와 AP1 전사인자의 전사 활성 저해에 의하여 야기됨을 확인하였다. NQO1 siRNA를 이용한 knock-down 실험에서 dicumarol이 PMA유도의 MMP-9 활성 억제에 NQO1의 관련성을 확인 할 수 없었다. Dicumarol는 PMA에 의한 세포이동 및 침윤을 억제하였는데, 이러한 현상은 MMP-9의 발현 및 활성을 조절함으로써 일어날 수 있음을 확인하였다.

옻 추출물의 세포독성 및 자궁 경부암 바이러스 암 유발인자 E6 와 E7의 작용에 미치는 효과 (The Effects of Rhus Extracts on The Cytotoxicity on Cancer Cells and E6 and E7 Oncogenes of Human Papillomavirus Type 16)

  • 조영식;정옥;조정원;이경애;심정현;김광수;이홍수;성기승;윤도영
    • 한국식품과학회지
    • /
    • 제32권6호
    • /
    • pp.1389-1395
    • /
    • 2000
  • 자궁 경부암은 매년 약 50만명 정도씩 사망하는 여성의 치명적인 사망원인의 하나이다. 인두유종 바이러스(HPV) 16형 및 18형과 자궁 경부암과의 긴밀한 관련성은 잘 알려져 있다. 옻 추출물 Rhus가 HPV 16형의 E6, E7 발암 유전자를 억제하는지 여부를 측정하였다. 이 Rhus는 자궁 경부암 세포주(C-33A, SiHa, Caski)와 HaCaT keratinocytes의 분열은 농도 의존적으로 억제하였다. In vitro binding assay와 효소면역측정법에 의하면 Rhus가 암 억제인자인 p53과 결합하여 분해 시키는데 필수적인 E6와 E6AP와의 결합을 억제할 뿐더러 암 억제인자 Rb와 E7과의 결합을 억제하였다. RT-PCR에 의하면 Rhus에 의해 E6 mRNA의 level이 감소하였으나 E7 mRNA는 변하지 않았음을 보여주었다. 이들 결과에 의하면 Rhus가 HPV 16형의 E6와 E7의 발암성을 억제함을 보여 주므로 HPV에 의해 유도된 자궁 경부암의 치료에 유효할 것으로 사료되어 좀 더 자세한 in vitro실험 등이 요구된다.

  • PDF

Grp78 is a Novel Downstream Target Gene of Hoxc8 Homeoprotein

  • Kang, Jin-Joo;Bok, Jin-Woong;Kim, Myoung-Hee
    • 대한의생명과학회지
    • /
    • 제17권1호
    • /
    • pp.1-5
    • /
    • 2011
  • Previously, we have identified 14 putative downstream target genes of Hoxc8 homeoprotein in F9 murine embryonic teratocarcinoma cells through proteomics analysis. Among those, we tested a possibility of a DNA-k type molecular chaperone, Grp78, as a direct downstream target of Hoxc8, by cloning a 2.4 kb upstream region of murine Grp78 into a reporter plasmid and by testing if Hoxc8 can regulate its expression. We observed that Hoxc8 proteins could transactivate the reporter gene, which was affected by small interference RNAs (siRNAs) against to Hoxc8, suggesting that Grp78 is a novel downstream target of Hoxc8 in vivo.

A NAT for reliable HCV RNA screening of blood

  • Hong, Seung-Hee;Jung, Sa-Rah;Park, Su-Jin;Yoo, Si-Hyung;Kim, Sun-Nam;Lee, Ki-Hong;Kang, Hye-Na;Shin, In-Soo;Park, Seung-Eun
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2001년도 Proceedings of International Convention of the Pharmaceutical Society of Korea
    • /
    • pp.223.1-223.1
    • /
    • 2001
  • PDF

Report of eight unrecorded Acetobacter species in Korea, discovered during the survey in 2018-2019

  • Heo, Jun;Won, Miyoung;Lee, Daseul;Han, Byeong-Hak;Hong, Seung-Beom;Kwon, Soon-Wo
    • Journal of Species Research
    • /
    • 제11권3호
    • /
    • pp.155-161
    • /
    • 2022
  • Acetic acid bacteria (AAB) convert ethanol to acetic acid through oxidation, and the fermentation pathway of AAB is important in the vinegar industry. The genus Acetobacter is the representative one of AAB, and several Korean traditional vinegars are produced using Acetobacter strains. Until now, four species in the genus Acetobacter were reported as native species in Korea. During the past two years, we isolated several AAB strains from fruits, flowers and fermented foods, and several AAB species unrecorded in Korea were found on the basis of 16S rRNA gene sequence analyses. In this study, we report eight Acetobacter species as native ones which are A. fabarum C10-3 (=KACC 21483) isolated from plumcot fruit (Naju-si), A. lovaniensis KDG-EC1 (=KACC 22697) isolated from diced radish kimchi (Naju-si), A. okinawensis GAM12-M2 (=KACC 22696) isolated from persimmon fruit (Sangju-si), A. orientalis FR32C4 (=KACC 22370) isolated from fruit of Cudrania tricuspidata (Jeonju-si), A. papaya FR35B3 (=KACC 22046) isolated from grape fruit (Yeongdong-gun), A. suratthaniensis GAM15-R2 (=KACC 22694) isolated from persimmon fruit(Gimje-si), A. syzygii C25-1 (=KACC 22048) isolated from peach fruit (Namwon-si) and A. thailandicus JDF1-M1 (=KACC 22693) isolated from plum fruit(Seoul).

Roles of microRNA-206 in Osteosarcoma Pathogenesis and Progression

  • Bao, Yun-Ping;Yi, Yang;Peng, Li-Lin;Fang, Jing;Liu, Ke-Bin;Li, Wu-Zhou;Luo, Hua-Song
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권6호
    • /
    • pp.3751-3755
    • /
    • 2013
  • Backgroud and Aims: MicroRNA-206 has proven to be down-regulated in many human malignancies in correlation with tumour progression. Our study aimed to characterize miR-206 contributions to initiation and malignant progression of human osteosarcoma. Methods: MiR-206 expression was detected in human osteosarcoma cell 1ine MG63, human normal osteoblastic cell line hFOB 1.19, and paired osteosarcoma and normal adjacent tissues from 65 patients using quantitative RT-PCR. Relationships of miR-206 levels to clinicopathological characteristics were also investigated. Moreover, miR-206 mimics and negative control siRNA were transfected into MG63 cells to observe effects on cell viability, apoptosis, invasion and migration. Results: We found that miR-206 was down-regulated in the osteosarcoma cell line MG63 and primary tumor samples, and decreased miR-206 expression was significantly associated with advanced clinical stage, T classification, metastasis and poor histological differentiation. Additionally, transfection of miR-206 mimics could reduce MG-63 cell viability, promote cell apoptosis, and inhibit cell invasion and migration. Conclusions: These findings indicate that miR-206 may have a key role in osteosarcoma pathogenesis and development. It could serve as a useful biomarker for prediction of osteosarcoma progression, and provide a potential target for gene therapy.

microRNA-214-mediated UBC9 expression in glioma

  • Zhao, Zhiqiang;Tan, Xiaochao;Zhao, Ani;Zhu, Liyuan;Yin, Bin;Yuan, Jiangang;Qiang, Boqin;Peng, Xiaozhong
    • BMB Reports
    • /
    • 제45권11호
    • /
    • pp.641-646
    • /
    • 2012
  • It has been reported that ubiquitin-conjugating enzyme 9 (Ubc9), the unique enzyme2 in the sumoylation pathway, is up-regulated in many cancers. However, the expression and regulation of UBC9 in glioma remains unknown. In this study, we found that Ubc9 was up-regulated in glioma tissues and cell lines compared to a normal control. UBC9 knockdown by small interfering RNA (siRNA) affected cell proliferation and apoptosis in T98G cells. Further experiments revealed that microRNA (miR)-214 directly targeted the 3' untranslated region (UTR) of UBC9 and that there was an inverse relationship between the expression levels of miR-214 and UBC9 protein in glioma tissues and cells. miR-214 overexpression suppressed the endogenous UBC9 protein and affected T98G cell proliferation. These findings suggest that miR-214 reduction facilitates UBC9 expression and is involved in the regulation of glioma cell proliferation.

Role of Neuropeptide Y and Proopiomelanocortin in Fluoxetine- Induced Anorexia

  • Myung Chang-Seon;Kim Bom-Taeck;Choi Si Ho;Song Gyu Yong;Lee Seok Yong;Jahng Jeong Won
    • Archives of Pharmacal Research
    • /
    • 제28권6호
    • /
    • pp.716-721
    • /
    • 2005
  • Fluoxetine is an anorexic agent known to reduce food intake and weight gain. However, the molecular mechanism by which fluoxetine induces anorexia has not been well-established. We examined mRNA expression levels of neuropeptide Y (NPY) and proopiomelanocortin (POMC) in the brain regions of rats using RT-PCR and in situ hybridization techniques after 2 weeks of administering fluoxetine daily. Fluoxetine persistently suppressed food intake and weight gain during the experimental period. The pair-fed group confirmed that the reduction in body weight in the fluoxetine treated rats resulted primarily from decreased food intake. RT-PCR analyses showed that mRNA expression levels of both NPY and POMC were markedly reduced by fluoxetine treatment in all parts of the brain examined, including the hypothalamus. POMC mRNA in situ signals were significantly decreased, NPY levels tended to increase in the arcuate nucleus (ARC) of fluoxetine treated rats (compared to the vehicle controls). In the pair-fed group, NPY mRNA levels did not change, but the POMC levels decreased (compared with the vehicle controls). These results reveal that the chronic administration of fluoxetine decreases expression levels in both NPY and POMC in the brain, and suggests that fluoxetine-induced anorexia may not be mediated by changes in the ARC expression of either NPY or POMC. It is possible that a fluoxetine raised level of 5-HT play an inhibitory role in the orectic action caused by a reduced expression of ARC POMC ($\alpha$-MSH).

Influence of Curcumin on HOTAIR-Mediated Migration of Human Renal Cell Carcinoma Cells

  • Pei, Chang-Song;Wu, Hong-Yan;Fan, Fan-Tian;Wu, Yi;Shen, Cun-Si;Pan, Li-Qun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권10호
    • /
    • pp.4239-4243
    • /
    • 2014
  • Background: This study investigated the influence of curcumin on HOX transcript antisense RNA (HOTAIR)-mediated migration of cultured renal cell carcinoma (RCC) cells. Materials and Methods: Five RCC cell lines (769-P, 769-P-vector, 769-P-HOTAIR, 786-0, and Kert-3 ) were maintained in vitro. The expression of HOTAIR mRNA was determined by quantitative real-time PCR and cell migration was measured by transwell migration assay. The effects of different concentrations of curcumin (0 to $80{\mu}mol/L$) on cell proliferation was determined by the CCK-8 assay and influence of non-toxic levels (0 to $10{\mu}M$) on the migration of RCC cells was also determined. Results: Comparison of the 5 cell lines indicated a correlation between HOTAIR mRNA expression and cell migration. In particular, the migration of 769-P-HOTAIR cells was significantly higher than that of 769-P-vector cells. Curcumin at $2.5-10{\mu}M$ had no evident toxicity against RCC cells, but inhibited cell migration in a concentration-dependent manner. Conclusions: HOTAIR expression is correlated with the migration of RCC cells, and HOTAIR may be involved in the curcumin-induced inhibition of RCC metastasis.

MiR-183-5p induced by saturated fatty acids regulates the myogenic differentiation by directly targeting FHL1 in C2C12 myoblasts

  • Nguyen, Mai Thi;Min, Kyung-Ho;Lee, Wan
    • BMB Reports
    • /
    • 제53권11호
    • /
    • pp.605-610
    • /
    • 2020
  • Skeletal myogenesis is a complex process that is finely regulated by myogenic transcription factors. Recent studies have shown that saturated fatty acids (SFA) can suppress the activation of myogenic transcription factors and impair the myogenic differentiation of progenitor cells. Despite the increasing evidence of the roles of miRNAs in myogenesis, the targets and myogenic regulatory mechanisms of miRNAs are largely unknown, particularly when myogenesis is dysregulated by SFA deposition. This study examined the implications of SFA-induced miR-183-5p on the myogenic differentiation in C2C12 myoblasts. Long-chain SFA palmitic acid (PA) drastically reduced myogenic transcription factors, such as myoblast determination protein (MyoD), myogenin (MyoG), and myocyte enhancer factor 2C (MEF2C), and inhibited FHL1 expression and myogenic differentiation of C2C12 myoblasts, accompanied by the induction of miR-183-5p. The knockdown of FHL1 by siRNA inhibited myogenic differentiation of myoblasts. Interestingly, miR-183-5p inversely regulated the expression of FHL1, a crucial regulator of skeletal myogenesis, by targeting the 3'UTR of FHL1 mRNA. Furthermore, the transfection of miR-183-5p mimic suppressed the expression of MyoD, MyoG, MEF2C, and MyHC, and impaired the differentiation and myotube formation of myoblasts. Overall, this study highlights the role of miR-183-5p in myogenic differentiation through FHL1 repression and suggests a novel miRNA-mediated mechanism for myogenesis in a background of obesity.