• Title/Summary/Keyword: SiON

Search Result 19,421, Processing Time 0.043 seconds

Structural Characteristics of $Y_2O_3$ Films Grown on Differently Surface-treated Si(111) by Ultrahigh Vacuum Ionized Cluster Beam (UHV-ICB 방법으로 Si(111) 기판위에 성장된 $Y_2O_3$ 박막의 구조적 특성에 관한 연구)

  • Lee, Dong-Hun;Seong, Tae-Yeon;Jo, Man-Ho;Hwang, Jeong-Nam
    • Korean Journal of Materials Research
    • /
    • v.9 no.5
    • /
    • pp.528-532
    • /
    • 1999
  • Y$_2$O$_3$films were grown on SiO$_2$-covered Si(111), and hydrogen-terminated Si(111), and hydrogen-terminated Si(111) substrates at 50$0^{\circ}C$ by ultrahigh vacuum ionized cluster beam deposition (UHV-ICB). The microstructures and growth behavior of these films have been investigated by transmission electron diffraction (TED) and high-resolution transmission electron microscopy(HREM). The TED results show that the $Y_2$O$_3$grown on the SiO$_2$-Si has the epitaxial relationship of (11-1)Y$_2$O$_3$∥(111)Si and [-110]Y$_2$O$_3$∥[-110]Si. The film on the H-Si substrate contains YS\ulcorner and amorphous YSi\ulcornerO\ulcorner layers at the interface, having the orientation relationship each other. For the YSi\ulcorner and the Si substrate, the relationship is (0001)YSi\ulcorner∥(111)Si and [1-210]YSi\ulcorner∥∥[-110]Si. For the $Y_2$O$_3$and the YSi\ulcorner ; the relationship is as follows: (11-1)Y$_2$O$_3$∥(0001)YSi\ulcorner and [-110]Y$_2$O$_3$∥[1-210]YSi\ulcorner(111)Y$_2$O$_3$∥(0001)YSi\ulcorner and [-110]Y$_2$O$_3$∥[1-210]YSi\ulcorner. Explanation is given to describe the formation mechanisms of the interfacial phases of SiO\ulcorner, YSi\ulcornerO\ulcorner and YSi\ulcorner. It is shown that the crystallinity of the $Y_2$O$_3$film on the SiO$_2$-Si(111) is better than that of $Y_2$O$_3$on H-Si(111).

  • PDF

Characteristics of Ni/SiC Schottky Diodes Grown by ICP-CVD

  • Gil, Tae-Hyun;Kim, Han-Soo;Kim, Yong-Sang
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.3
    • /
    • pp.111-116
    • /
    • 2004
  • The Ni/SiC Schottky diode was fabricated with the $\alpha$-SiC thin film grown by the ICP-CVD method on a (111) Si wafer. $\alpha$-SiC film has been grown on a carbonized Si layer in which the Si surface was chemically converted to a very thin SiC layer achieved using an ICP-CVD method at $700^{\circ}C$. To reduce defects between the Si and $\alpha$-SiC, the surface of the Si wafer was slightly carbonized. The film characteristics of $\alpha$-SiC were investigated by employing TEM (Transmission Electron Microscopy) and FT-IR (Fourier Transform Infrared Spectroscopy). Sputterd Ni thin film was used as the anode metal. The boundary status of the Ni/SiC contact was investigated by AES (Auger Electron Spectroscopy) as a function of the annealing temperature. It is shown that the ohmic contact could be acquired beyond a 100$0^{\circ}C$ annealing temperature. The forward voltage drop at 100A/cm was I.0V. The breakdown voltage of the Ni/$\alpha$-SiC Schottky diode was 545 V, which is five times larger than the ideal breakdown voltage of the silicon device. As well, the dependence of barrier height on temperature was observed. The barrier height from C- V characteristics was higher than those from I-V.

Growth Mechanism of Graphene structure on 3C-SiC(111) Surface: A Molecular Dynamics Simulation

  • Hwang, Yu-Bin;Lee, Eung-Gwan;Choe, Hui-Chae;Jeong, Yong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.433-433
    • /
    • 2011
  • Since the concept of graphene was established, it has been intensively investigated by researchers. The unique characteristics of graphene have been reported, the graphene attracted a lot of attention for material overcomes the limitations of existing semiconductor materials. Because of these trends, economical fabrication technique is becoming more and more important topic. Especially, the epitaxial growth method by sublimating the silicon atoms on Silicon carbide (SiC) substrate have been reported on the mass production of high quality graphene sheets. Although SiC exists in a variety of polytypes, the 3C-SiC polytypes is the only polytype that grows directly on Si substrate. To practical use of graphene for electronic devices, the technique, forming the graphene on 3C-SiC(111)/Si structure, is much helpful technique. In this paper, we report on the growth of graphene on 3C-SiC(111) surface. To investigate the morphology of formed graphene on the 3C-SiC(111) surface, the radial distribution function (RDF) was calculated using molecular dynamics (MD) simulation. Through the comparison between the kinetic energies and the diffusion energy barrier of surface carbon atoms, we successfully determined that the graphitization strongly depends on temperature. This graphitization occurs above the annealing temperature of 1500K, and is also closely related to the behavior of carbon atoms on SiC surface. By analyzing the results, we found that the diffusion energy barrier is the key parameter of graphene growth on SiC surface.

  • PDF

The Frequency Characteristics of Elastic Wave by Crack Propagation of SiC/SiC Composites

  • Kim, J.W.;Nam, K.W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.110-114
    • /
    • 2012
  • We studied on the nondestructive evaluation of the elastic wave signal of SiC ceramics and SiC/SiC composite ceramics under monotonic tensile loading. The elastic wave signal of cross and unidirectional SiC/SiC composite ceramics were obtained by pencil lead method and bending test. It was applied for the time-frequency method which used by the discrete wavelet analysis algorithm. The time-frequency analysis provides time variation of each frequency component involved in a waveform, which makes it possible to evaluate the contribution of SiC fiber frequency. The results were compared with the characteristic of frequency group from SiC slurry and fiber. Based on the results, if it is possible to shift up and design as a higher frequency group, we will can make the superior material better than those of exiting SiC/SiC composites.

  • PDF

Effect of Transition Metal on Properties of SiC Electroconductive Ceramic Composites (SIC 도전성 세라믹 복합체의 특성에 미치는 천이금속의 영향)

  • 신용덕;오상수;주진영
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.7
    • /
    • pp.352-357
    • /
    • 2004
  • The composites were fabricated, respectively, using 61vol.% SiC - 39vol.% TiB$_2$ and using 61vo1.% SiC - 39vo1.% WC powders with the liquid forming additives of 12wt% $Al_2$O$_3$+Y$_2$O$_3$ by pressureless annealing at 180$0^{\circ}C$ for 4 hours. Reactions between SiC and transition metal TiB$_2$, WC were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H), TiB$_2$ and YAG(Al$_{5}$Y$_3$O$_{12}$) crystal phase on the SiC-TiB$_2$, and SiC(2H), WC and YAG(Al$_{5}$Y$_3$O$_{12}$) crystal phase on the SiC-WC composites. $\beta$\$\longrightarrow$$\alpha$-SiC phase transformation was ocurred on the SiC-TiB$_2$, but $\alpha$\$\longrightarrow$$\beta$-SiC reverse transformation was not occurred on the SiC-WC composites. The relative density, the vicker's hardness, the flexural strength and the fracture toughness showed respectively value of 96.2%, 13.34GPa, 310.19Mpa and 5.53Mpaㆍml/2 in SiC-WC composites. The electrical resistivity of the SiC-TiB$_2$ and the SiC-WC composites is all positive temperature coefficient resistance(PTCR) in the temperature ranges from $25^{\circ}C$ to 50$0^{\circ}C$. 2.64${\times}$10-2/$^{\circ}C$ of PTCR of SiC-WC was higher than 1.645${\times}$10-3/$^{\circ}C$ of SiC-TiB$_2$ composites.posites.

A Study on Anisotropic Etching Characteristics of Silicon in TMAH/AP/IPA Solutions for Piezoresistive Pressure Sensor Applications (압저항 압력센서 응용을 위한 TMAH/AP/IPA 용액의 실리콘 이방성 식각특성에 대한 연구)

  • 윤의중;김좌연;이태범;이석태
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.3
    • /
    • pp.9-14
    • /
    • 2004
  • In this study, Si anisotropic etching characteristics of tetramethylammonium hydroxide (TMAH)/ ammonium persulfate(AP)/isopropyl alcohol(IPA) solutions were investigated to realize the optimum structure of a diaphragm for the piezoresistive pressure sensor application. Due to its low toxicity and its high compatibility with the CMOS processing, TMAH was used as Si anisotropic etchants. The variations of Si etch rate on the etching temperature, TMAH concentration, and etching time were obtained. With increasing the etching temperature and decreasing TMAH concentrations, the Si etch rate is increased while a significant non-unifonnity exists on the etched surface because of formation of hillocks on the (100) surface. The addition of IPA to TMAH solution leads to smoother etched surfaces but, makes the Si etch rate lower. However, with the addition of AP to TMAH solution, the Si etch rate is increased and an improvement in flatness on the etching front is observed. The Si etch rate is also maximized with increasing the number of addition of AP to TMAH solution per one hour. The Si square membranes of 20${\mu}{\textrm}{m}$ thickness and l00-400${\mu}{\textrm}{m}$ one-side length were fabricated successfully by applying optimum Si etching conditions of TMAH/AP solutions.

Epitaxial Growth of CoSi2 Layer on (100)Si Substrate using CoNx Interlayer deposited by Reactive Sputtering (반응성 스퍼터링법으로 증착된 CoNx 중간층을 이용한 (100)Si 기판 위에서의 에피택셜 CoSi2 성장 연구)

  • Lee, Seung-Ryul;Kim, Sun-Il;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • v.16 no.1
    • /
    • pp.30-36
    • /
    • 2006
  • A novel method was proposed to grow an epitaxial $CoSi_2$ on (100)Si substrate. A $CoN_x$ interlayer was deposited by reactive sputtering of Co in an Ar+$N_2$ flow. From the Ti/Co/$CoN_x$/Si structure, a uniform and thin $CoSi_2$ layer was epitaxially grown on (100)Si by annealing above $700^{\circ}C$. Two amorphous layers were found at the $CoN_x$/Si interface, where the top layer has a silicon nitride (Si-N) bonding state with some Co content and the bottom layer has a Co-Si intermixing state. The SiNx amorphous layer seems to play a critical role of suppressing the diffusion of Co into Si substrate for the direct formation of epitaxial $CoSi_2$.

Development of Si(110) CMOS process for monolithic integration with GaN power semiconductor (질화갈륨 전력반도체와 Si CMOS 소자의 단일기판 집적화를 위한 Si(110) CMOS 공정개발)

  • Kim, Hyung-tak
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.326-329
    • /
    • 2019
  • Gallium nitride(GaN) has been a superior candidate for the next generation power electronics. As GaN-on-Si substrate technology is mature, there has been new demand for monolithic integration of GaN technology with Si CMOS devices. In this work, (110)Si CMOS process was developed and the fabricated devices were evaluated in order to confirm the feasibility of utilizing domestic foundry facility for monolithic integration of Si CMOS and GaN power devices.

Ohmic Contact Effect and Electrical Characteristics of ITO Thin Film Depending on SiOC Insulator (SiOC 절연박막 특성에 의존하는 ITO 투명박막의 전기적인 특성과 오믹접합의 효과)

  • Oh, Teresa
    • Korean Journal of Materials Research
    • /
    • v.25 no.7
    • /
    • pp.352-357
    • /
    • 2015
  • To research the characteristics of ITO film depending on a polarity of SiOC, specimens of ITO/SiOC/glass with metal-insulator-substrates (MIS) were prepared using a sputtering system. SiOC film with 17 sccm of oxygen flow rate became a non-polarity with low surface energy. The PL spectra of the ITO films deposited with various argon flow rates on SiOC film as non-polarity were found to lead to similar formations. However, the PL spectra of ITO deposited with various argon flow rates on SiOC with polarity were seen to have various features owing to the chemical reaction between ITO and the polar sites of SiOC. Most ITO/SiOC films non-linearly showed the Schottky contacts and current increased. But the ITO/SiOC film with a low current demonstrated an Ohmic contact.

Tribological Behavior of Si-DLC/DLC Coatings with Various Si Contents (Si 함유량에 따른 Si-DLC/DLC 코팅의 건조마찰 특성)

  • Ahn, Hyo-Sok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.212-216
    • /
    • 2007
  • Although DLC coatings have good tribological properties, these are dependent on the deposition method, property of contact surface, and test condition. Si-DLC/DLC coatings with various Si content were deposited on Si substrates and tested using a reciprocating friction tester against steel balls. The results revealed that the tribological behavior of Si-DLC/DLC coatings was dependent on the Si content. The formation of transfer film and wear particles on the contact surface was greatly influenced by the Si content in DLC coatings. In particular, silicon oxide transfer film formed by tribochemical reaction contributed to reduce wear and friction.