• Title/Summary/Keyword: SiOF Thin Film

Search Result 2,908, Processing Time 0.037 seconds

The surface kinetic properties between $BCl_3/Cl_2$/Ar plasma and $Al_2O_3$ thin film

  • Yang, Xue;Kim, Dong-Pyo;Um, Doo-Seung;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.169-169
    • /
    • 2008
  • To keep pace with scaling trends of CMOS technologies, high-k metal oxides are to be introduced. Due to their high permittivity, high-k materials can achieve the required capacitance with stacks of higher physical thickness to reduce the leakage current through the scaled gate oxide, which make it become much more promising materials to instead of $SiO_2$. As further studying on high-k, an understanding of the relation between the etch characteristics of high-k dielectric materials and plasma properties is required for the low damaged removal process to match standard processing procedure. There are some reports on the dry etching of different high-k materials in ICP and ECR plasma with various plasma parameters, such as different gas combinations ($Cl_2$, $Cl_2/BCl_3$, $Cl_2$/Ar, $SF_6$/Ar, and $CH_4/H_2$/Ar etc). Understanding of the complex behavior of particles at surfaces requires detailed knowledge of both macroscopic and microscopic processes that take place; also certain processes depend critically on temperature and gas pressure. The choice of $BCl_3$ as the chemically active gas results from the fact that it is widely used for the etching o the materials covered by the native oxides due to the effective extraction of oxygen in the form of $BCl_xO_y$ compounds. In this study, the surface reactions and the etch rate of $Al_2O_3$ films in $BCl_3/Cl_2$/Ar plasma were investigated in an inductively coupled plasma(ICP) reactor in terms of the gas mixing ratio, RF power, DC bias and chamber pressure. The variations of relative volume densities for the particles were measured with optical emission spectroscopy (OES). The surface imagination was measured by AFM and SEM. The chemical states of film was investigated using X-ray photoelectron spectroscopy (XPS), which confirmed the existence of nonvolatile etch byproducts.

  • PDF

Lamellar Structured TaN Thin Films by UHV UBM Sputtering (초고진공 UBM 스퍼터링으로 제조된 라멜라 구조 TaN 박막의 연구)

  • Lee G. R.;Shin C. S.;Petrov I.;Greene J, E.;Lee J. J.
    • Journal of Surface Science and Engineering
    • /
    • v.38 no.2
    • /
    • pp.65-68
    • /
    • 2005
  • The effect of crystal orientation and microstructure on the mechanical properties of $TaN_x$ was investigated. $TaN_x$ films were grown on $SiO_2$ substrates by ultrahigh vacuum unbalanced magnetron sputter deposition in mixed $Ar/N_2$ discharges at 20 mTorr (2.67 Pa) and at $350^{\circ}C$. Unlike the Ti-N system, in which TiN is the terminal phase, a large number of N-rich phases in the Ta-N system could lead to layers which had nano-sized lamella structure of coherent cubic and hexagonal phases, with a correct choice of nitrogen fraction in the sputtering mixture and ion irradiation energy during growth. The preferred orientations and the micro-structure of $TaN_x$ layers were controlled by varing incident ion energy $E_i\;(=30eV\~50eV)$ and nitrogen fractions $f_{N2}\;(=0.1\~0.15)$. $TaN_x$ layers were grown on (0002)-Ti underlayer as a crystallographic template in order to relieve the stress on the films. The structure of the $TaN_x$ film transformed from Bl-NaCl $\delta-TaN_x$ to lamellar structured Bl-NaCl $\delta-TaN_x$ + hexagonal $\varepsilon-TaN_x$ or Bl-NaCl $\delta-TaN_x$ + hexagonal $\gamma-TaN_x$ with increasing the ion energy at the same nitrogen fraction $f_{N2}$. The hardness of the films also increased by the structural change. At the nitrogen fraction of $0.1\~0.125$, the structure of the $TaN_x$ films was changed from $\delta-TaN_x\;+\;\varepsilon-TaN_x\;to\;\delta-TaN_x\;+\;\gamma-TaN_x$ with increasing the ion energy. However, at the nitrogen fraction of 0.15 the film structure did not change from $\delta-TaN_x\;+\;\varepsilon-TaN_x$ over the whole range of the applied ion energy. The hardness increased significantly from 21.1 GPa to 45.5 GPa with increasing the ion energy.

Effect of Deposition Temperature on the Characteristics of Low Dielectric Fluorinated Amorphous Carbon Thin Films (증착온도가 저유전 a-C:F 박막의 특성에 미치는 영향)

  • Park, Jeong-Won;Yang, Sung-Hoon;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1211-1215
    • /
    • 1999
  • Fluorinated amorphous carbon (a-C:F) films were prepared by an electron cyclotron resonance chemical vapor deposition (ECRCVD) system using a gas mixture of $C_2F_6$ and $CH_4$ over a range of deposition temperature (room temperature ~ 300$^{\circ}C$). 500$^{\AA}C$ thick DLC films were pre-deposited on Si substrate to improve the strength between substrate and a-C:F film. The chemical bonding structure, chemical composition, surface roughness and dielectric constant of a-C:F films deposited by varying the deposition temperature were studied with a variety of techniques, such as Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS), atomic force microscopy (AFM) and capacitance-voltage(C-V) measurement. Both deposition rate and fluorine content decreased linearly with increasing deposition temperature. As the deposition temperature increased from room temperature to 300$^{\circ}C$, the fluorine concentration decreased from 53.9at.% down to 41.0at.%. The dielectric constant increased from 2.45 to 2.71 with increasing the deposition temperature from room temperature to 300$^{\circ}C$. The film shrinkage was reduced with increasing deposition temperature. This results ascribed by the increased crosslinking in the films at the higher deposition temperature.

  • PDF

Formation of GaN microstructures using metal catalysts on the vertex of GaN pyramids (금속촉매를 이용한 GaN 피라미드 꼭지점 위의 마이크로 GaN 구조 형성)

  • Yun, W.I.;Jo, D.W.;Ok, J.E.;Jeon, H.S.;Lee, G.S.;Jung, S.K.;Bae, S.M.;Ahn, H.S.;Yang, M.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.3
    • /
    • pp.110-113
    • /
    • 2011
  • In this paper, we propose a new method for the fabrication of GaN microstructures formed only on the vertex of GaN pyramid by using of metal catalysts. GaN pyramidal structures were selectively grown on 3 ${\mu}m$ $SiO_2$ dot patterns followed by thin film deposition of Au and Cr only on the vertex area of the GaN pyramids with precisely controlled photolithography. After the metal deposition, the samples were loaded in the MOVPE reactor for the growth of GaN microstructures for 10 minutes. Temperature for the growth of the GaN microstructures was changed from $650^{\circ}C$ to $750^{\circ}C$. Rod type GaN microstructures were grown in the direction of vertical to the six {1-101} facets and the shape of the GaN microstructures was changed depend on the type of metal.

Development of an Improved Numerical Methodology for Design and Modification of Large Area Plasma Processing Chamber

  • Kim, Ho-Jun;Lee, Seung-Mu;Won, Je-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.221-221
    • /
    • 2014
  • The present work proposes an improved numerical simulator for design and modification of large area capacitively coupled plasma (CCP) processing chamber. CCP, as notoriously well-known, demands the tremendously huge computational cost for carrying out transient analyses in realistic multi-dimensional models, because electron dissociations take place in a much smaller time scale (${\Delta}t{\approx}10-8{\sim}10-10$) than time scale of those happened between neutrals (${\Delta}t{\approx}10-1{\sim}10-3$), due to the rf drive frequencies of external electric field. And also, for spatial discretization of electron flux (Je), exponential scheme such as Scharfetter-Gummel method needs to be used in order to alleviate the numerical stiffness and resolve exponential change of spatial distribution of electron temperature (Te) and electron number density (Ne) in the vicinity of electrodes. Due to such computational intractability, it is prohibited to simulate CCP deposition in a three-dimension within acceptable calculation runtimes (<24 h). Under the situation where process conditions require thickness non-uniformity below 5%, however, detailed flow features of reactive gases induced from three-dimensional geometric effects such as gas distribution through the perforated plates (showerhead) should be considered. Without considering plasma chemistry, we therefore simulated flow, temperature and species fields in three-dimensional geometry first, and then, based on that data, boundary conditions of two-dimensional plasma discharge model are set. In the particular case of SiH4-NH3-N2-He CCP discharge to produce deposition of SiNxHy thin film, a cylindrical showerhead electrode reactor was studied by numerical modeling of mass, momentum and energy transports for charged particles in an axi-symmetric geometry. By solving transport equations of electron and radicals simultaneously, we observed that the way how source gases are consumed in the non-isothermal flow field and such consequences on active species production were outlined as playing the leading parts in the processes. As an example of application of the model for the prediction of the deposited thickness uniformity in a 300 mm wafer plasma processing chamber, the results were compared with the experimentally measured deposition profiles along the radius of the wafer varying inter-electrode gap. The simulation results were in good agreement with experimental data.

  • PDF

Magnetic Properties of RF Diode Sputtered FeN Multilayer Films (RF Diode 스퍼터 방법으로 증착된 FeN 다층 박막의 자기적 특성)

  • 최연봉;박세익;조순철
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.42-47
    • /
    • 1995
  • FeN thin films for inductive recording heads were sputter deposited using RF diode sputtering mehtod from a pure iron target onto 7059 glass substrates, and their magnetic properties were measured. The magnetic properties were greatly affected by film thickness, gas pressure, sputter power and flow ratio of $N_{2}$ to Ar. Single layer FeN films with their thickness varied from $1,000\;{\AA}$ to $6,000\;{\AA}$ were doposited. 800 W sputter power, 3 mT gas pressure, $N_{2}$ to Ar flow ratio of 6.6 : 100 were the sputtering conditions. Up to 7 layers of FeN films having total thickness of $6,000\;{\AA}$ were deposited using $SiO_{2}$ of $30\;{\AA}$ thickness as intermediate layers and their coercivity and saturation magnetization were measured. The sputtering conditions were the same as those in the single layer films. Easy axis coercivity of the single layer FeN films gradually decreased as their thickness was increased, but for the films with their thicknesses above $3,000\;{\AA}$, the coercivity changed very little. As the number of the FeN layers were increased, the coercivity decreased We estimated the grain size of FeN films from the FWHM (Full Width at Half Maximum) of X-ray diffraction peaks. The grain size steadily decreased from about $200\;{\AA}$ to $120\;{\AA}$ as the number of layers were increased. Minimum hard axis coercivity of 0.4 Oe was obtained when the number of layers was four. Maximum relative permeability was 2,900 when the number of layers was three. The cut off frequeocy of the multilayer films were above 100 MHz.

  • PDF

Micromachined pH Sensor Using Open Well Structures (개방형 우물 구조를 이용한 마이크로머신형 pH 센서)

  • Kim, Heung-Rak;Kim, Young-Deog;Jeong, Woo-Cheol;Kim, Kwang-Il;Kim, Dong-Su
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.347-353
    • /
    • 2002
  • A structure of a glass electrode-type pH sensor for measuring any concentration of $H^+$ in an aqueous solution was embodied with bulk micromachining technology. Two open well structures were formed, and a reference electrode was secured by the Ag/AgCl thin film in the sloped side of the etched structure. A sensitive membrane of an indicator electrode for generating a potential by an exchange reaction to $H^+$ was made with a glass containing Na 20% or more finely so that its thickness might be $100{\mu}m$ or so, and then it was bonded to one pyramidal structure. A liquid junction for a current path was formed by filling an agar in the anisotropically etched part of the Si wafer, which had a size of $50{\mu}m{\times}50{\mu}m$, and then bonded it to the other. After complete fabrication of each part, it was filled with a 2M KCl reference solution and encapsulated the sensor structure with a cold expoxy. The potential value of fabricated pH sensor was about 90mV/pH in the standard pH solutions.

GHz Bandwidth Characteristics of Rectangular Spiral type Thin Film Inductors (사각 나선형 박막 인덕터의 GHz 대역 특성)

  • Kim, J.;Jo, S.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.1
    • /
    • pp.52-57
    • /
    • 2004
  • In this research, characteristics of air core rectangular spiral type inductors of ㎓ band are numerical analyzed. The basic structure of inductors is a rectangular spiral having 390${\mu}{\textrm}{m}$${\times}$390${\mu}{\textrm}{m}$ size, 5.5 turns, line width of 10 ${\mu}{\textrm}{m}$ and line space of 10 ${\mu}{\textrm}{m}$. Frequency characteristics were simulated up to 10 ㎓. The substrate was modeled as Si, Sapphire, glass and GaAs and the conductor as Cu. The thickness of the conductor was fixed at 2. The number of turns was n.5 to make the input and output terminals to be on the opposite sides. The initial inductance of the basic inductor structure was 13.0 nH, maximum inductance 60.0 nH and resonance frequency 4.25 ㎓. As the dielectric constant of the substrate was increased, the initial inductance varied only slightly, but the resonance frequency decreased considerably. As the number of turns was varied from 1.5 to 9.5, the initial inductance was increased linearly from 2.9 nH to 15.9 nH and, then, saturated at 16.9 nH. The Q factor increased only slightly. The line width and line space of inductors were varied from 5 ${\mu}{\textrm}{m}$ to 20 ${\mu}{\textrm}{m}$, which resulted in the decrease of the initial and maximum inductances. But the resonance frequency was increased. Q factor displayed an increase and a decrease, respectively, when the line width and line space were increased.

Evaluation of Contrast-detail Characteristics of an A-Se Based Digital X-ray Imaging System (A-Se 기반 디지털 X-선 영상장치의 Contrast-detail 특성 평가)

  • Hyun, Hye-Kyung;Park, So-Hyun;Kim, Keun-Young;Cho, Hee-Moon;Cho, Hyo-Sung
    • Journal of the Korean Society of Radiology
    • /
    • v.1 no.1
    • /
    • pp.11-16
    • /
    • 2007
  • In this study, we have performed contrast-detail analysis for an amorphous selenium(a-Se) based digital X-ray imaging system by using a contrast-detail phantom(CDRAD 2.0) to test its low contrast performance. The X-ray imaging system utilizes an 500-mm-thick a-Se semiconductor X-ray absorber coated over an amorphous silicon(a-Si) TFT(thin-film transistor) detector matrix with a $139mm{\times}139mm$ pixel size and a $46.7cm{\times}46.7cm$ active area. In the measurement of contrast-detail curves we first acquired X-ray images of the CDRAD 2.0 phantom at given test conditions(i.e., 40, 50, 60, 70, 80 kVp, and 16 mA.s), and then evaluated the contrast-detail characteristics of the imaging system from each phantom image by using an image quality factor called the image-quality-figure-inverse(IQFinv). The IQFinv values for the imaging system gradually improved with the photon fluence, indicating the improvement of image visibility: 24.4, 35.3, 39.2, 41.5, and 43.4 at photon fluences of $1.8{\times}105$, $5.9{\times}105$, $11.3{\times}105$, $19.4{\times}105$, and $29.4{\times}105$ photons/$mm^2$, respectively.

  • PDF

Improvement of Conductive Micro-pattern Fabrication using a LIFT Process (레이저 직접묘화법을 이용한 미세패턴 전도성 향상에 관한 연구)

  • Lee, Bong-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.475-480
    • /
    • 2017
  • In this paper, the conductivity of the fine pattern is improved in the insulating substrate by laser-induced forward transfer (LIFT) process. The high laser beam energy generated in conventional laser induced deposition processes induces problems such as low deposition density and oxidation of micro-patterns. These problems were improved by using a polymer coating layer for improved deposition accuracy and conductivity. Chromium and copper were used to deposit micro-patterns on silicon wafers. A multi-pulse laser beam was irradiated on a metal thin film to form a seed layer on an insulating substrate(SiO2) and electroless plating was applied on the seed layer to form a micro-pattern and structure. Irradiating the laser beam with multiple scanning method revealed that the energy of the laser beam improved the deposition density and the surface quality of the deposition layer and that the electric conductivity can be used as the microelectrode pattern. Measuring the resistivity after depositing the microelectrode by using the laser direct drawing method and electroless plating indicated that the resistivity of the microelectrode pattern was $6.4{\Omega}$, the resistance after plating was $2.6{\Omega}$, and the surface texture of the microelectrode pattern was uniformly deposited. Because the surface texture was uniform and densely deposited, the electrical conductivity was improved about three fold.