• Title/Summary/Keyword: SiInZnO

Search Result 762, Processing Time 0.037 seconds

Comparison of the optical properties of ZnO thin films grown on various substrates by pulsed laser deposition (기판 변화에 따른 ZHO 박막의 광학특성 연구)

  • 배상혁;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.828-830
    • /
    • 2000
  • Various substrates were compared for the investigation of the optical properties of ZnO thin films. ZnO thin films have been deposited on (100) p-type silicon substrates and (001) sapphire substrates by pulsed laser deposition technique using a Nd:YAG laser with the wavelength of 355 nm. Oxygen and nitrogen gases were used as ambient gases. Substrate temperatures were varied in the range of 200$^{\circ}C$ to 600$^{\circ}C$ at a fixed ambient gas pressure of 350 mTorr. ZnO films have been deposited on various substrates, such as Si and sapphire wafers. We have investigated substrate effect on the optical and structural properties of ZnO thin films using X-ray diffraction (XRD) and photoluminescence (PL).

  • PDF

Resistive Switching Effects of Zinc Silicate for Nonvolatile Memory Applications

  • Im, Minho;Kim, Jisoo;Park, Kyoungwan;Sok, Junghyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.348-352
    • /
    • 2022
  • Resistive switching behaviors of a co-sputtered zinc silicate thin film (ZnO and SiO2 targets) have been investigated. We fabricated an Ag/ZnSiOx/highly doped n-type Si substrate device by using an RF magnetron sputter system. X-ray diffraction pattern (XRD) indicated that the Zn2SiO4 was formed by a post annealing process. A unique morphology was observed by scanning electron microscope (SEM) and atomic force microscope (AFM). As a result of annealing process, 50 nm sized nano clusters were formed spontaneously in 200~300 nm sized grains. The device showed a unipolar resistive switching process. The average value of the ratio of the resistance change between the high resistance state (HRS) and the low resistance state (LRS) was about 106 when the readout voltage (0.5 V) was achieved. Resistance ratio is not degraded during 50 switching cycles. The conduction mechanisms were explained by using Ohmic conduction for the LRS and Schottky emission for the HRS.

Microstructure of High Voltage ZnO Varistors by Various Addition. (다양한 첨가물에 의한 고전압 ZnO 바리스터의 미세구조)

  • O, Su-Hong;Gi, Hyeon-Cheol;Jang, Dong-Hwan;Hong, Gyeong-Jin;Kim, Tae-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.185-189
    • /
    • 2000
  • ZnO varistor has many merits as compared with SiC varistor. But, because of leakage current and non-linear coefficient, it has unstable function properties. For the purpose of improvement of ZnO varistor properties, ZnO varistor is studied according to sintering condition and mixing condition. ZnO varistor, $ZnO-Bi_2O_2-Y_2O_3-MnO-Cr_2O_3-Sb_2O_3$ series, is fabricated with $Sb_2O_3$ mol ratio(0.5-4[mol%]) and sintered at $1250[^{\circ}C]$ In accordance with $Sb_2O_3$ mol ratio and sintering temperature, grain size and non-linear coefficient are measured. The specimen, $Sb_2O_3$ mol ratio is 1[mol%], has small grain size. It has best properties because of its liquid phase shape. When $Sb_2O_3$ mol ratio is 1[mol%], grain size is decreased.

  • PDF

플라즈마 분자선 에피택시에 의해 성장 멈춤법으로 증착된 완충층에 성장된 ZnO 박막의 특성 변화

  • Im, Gwang-Guk;Kim, Min-Su;Kim, So-ARam;Nam, Gi-Ung;Park, Dae-Hong;Cheon, Min-Jong;Lee, Dong-Yul;Kim, Jin-Su;Kim, Jong-Su;Lee, Ju-In;Im, Jae-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.83-83
    • /
    • 2011
  • 본 연구에서는 p-type Si (100) 위에 분자선 에피택시 성장방법으로 ZnO 완충층이 삽입된 ZnO 박막을 성장시켰다. ZnO 완충층은 Zn 셀 셔터의 열림/닫힘을 반복하는 성장 멈춤법으로 성장되었다. Zn 셀 셔터의 열림 시간은 4분, 2분, 1분이며 닫힘 시간은 2분으로 동일하게 유지하였다. 이러한 과정은 각각 5, 10, 20회로 반복되었으며 ZnO 완충층을 성장한 후 ZnO 박막은 기존의 분자선 에피택시 방법으로 성장되었다. ZnO 박막의 구조적, 광학적 특성은 field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), photoluminescence (PL)로 조사하였다. SEM 측정결과 성장 멈춤 횟수가 증가함에 따라 ZnO 박막의 표면은 섬(island) 구조에서 미로(maze) 구조로 변화하였고, XRD 측정결과 full-width at half-maximum (FWHM) 이 감소하고 결정립 크기(grain size)가 증가하였다. 그리고 PL 측정결과 성장 멈춤 횟수가 증가함에 따라 near-band-edge emission (NBE) 피크의 세기가 증가하였고 deep-level emission (DLE) 피크의 위치는 오렌지 발광에서 녹색 발광으로 청색편이(blue-shift)하였다.

  • PDF

Characteristics of ZnO thin films by RF magnetron sputtering for FBAR application (RF 마그네트론 스퍼터링을 이용한 FBAR 소자용 ZnO 박막의 특성)

  • Kim, S.Y.;Lee, N.H.;Kim, S.G.;Park, S.H.;Jung, M.G.;Shin, Y.H.;Ji, S.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1523-1525
    • /
    • 2003
  • Due to the rapid development of wireless networking system, researches on the communication devices are mainly focus on microwave frequency devices such as filters, resonators, and phase shifters. Among them, Film bulk acoustic resonator (FBAR) has been paid extensive attentions for their high performance. In this research, ZnO thin films were deposited by RF-magnetron sputtering on Al/$SiO_2$/Si wafer and then crystalline properties and surface morphology were examined. To measure crystalline structure and surface morphology X-ray diffraction (XRD) and Scanning Electron Microscope (SEM) were employed. It was showed that crystalline properties of ZnO thin films were strongly dependant on the deposition conditions. As increasing the deposition temperature and the deposition pressures, the peak intensities of ZnO(002) plane were increased until $300^{\circ}C$, then decreased rapidly. At the sputtering conditions of RF power of 213 W and working pressure of 15 m Torr, ZnO film had excellent c-axis orientation, surface morphology, and adhesion to the substrate. In conclusion we optimized smooth surface with very small grains as well as highly c-axis oriented ZnO film for FBAR applications.

  • PDF

Fabrication of ZnO Nanostructures with Various Growth Conditions by Vapor Phase Transport

  • Kim, So-A-Ram;Nam, Gi-Woong;Kim, Min-Su;Yim, Kwang-Gug;Kim, Do-Yeob; Leem, Jae-Youn
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.250-250
    • /
    • 2011
  • Zinc oxide (ZnO) structures have great potential in many applications. Currently, the most commonly used method to grow ZnO nanostructres are the vapor transport method (VPT). The morphology of the ZnO structures largely related to the growth conditions, including growth temperature, distance between the substrate and source, and gas ambient. Previously ZnO nanosturecutres with high crystallinity were obtained at the growth temperature of 800$^{\circ}C$, in the argon and oxygen gas ambient. In this study, we report the properties of the ZnO nanostructures, which were synthesized on Au-catalyzed Si substrate by VPT, using a mixture of ZnO and graphite powders as source material under the different condition, including gas ratio of argon/oxygen and distance between substrate and source at the growth temperature of 800$^{\circ}C$. The structural and optical properties of the ZnO nanostructures were investigated by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and photoluminescence (PL).

  • PDF

Synthesis and optical properties of star-like ZnO nanostructures grown on with carbon catalyst (탄소 촉매에 의하여 성장된 별-모양 ZnO 나노 구조물의 합성과 광학적 특성)

  • Jung, Il-Hyun;Chae, Myung-Sic;Lee, Ui-Am
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.1-6
    • /
    • 2010
  • Star-like ZnO nanostructures were grown on SI(100) substrates with carbon(C) catalyst by employing vapor-solid(VS) mechanism. The morphologies and structure of ZnO nanostructures were investigated by Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and Raman spectrum, Photoluminescence spectrum. The results demonstrated that the as-synthesized products consisted of star-like ZnO nanostructure with hexagonal wurtzite phase. Nanostructures grown at 1100 were mainly star-like in structure with diameters of 500 nm. The legs of the star-like nanostructures were preferentially grown up along the [0001] direction. A vapor.solid (VS) growth mechanism was proposed to explain the formation of the star-like structures. Photoluminescence spectrum exhibited a narrow emission band peak around 380 nm and a broad one around 491 nm. Raman spectrum of the ZnO nanostructures showed oxygen defects in ZnO nanostructures due to the existence of Ar gas during the growth process, leading to the dominant green band peak in the PL spectrum.

Enhancement of Photoluminescence Intensity of ZnS Nanowires by Annealing in O2 (산소 분위기에서 열처리시 ZnS 나노선의 발광 강도 변화)

  • Kwon, Jin-Up;Lee, Jong-Woo
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.5
    • /
    • pp.193-197
    • /
    • 2012
  • The influence of annealing process in an $O_2$ atmosphere on the photoluminescence (PL) spectra properties of ZnS nanowires has been investigated. ZnS nanowires with the diameters approximately 100 nm and the lengths a few tens micrometers were synthesized by evaporating ZnS powders on Si substrates while using an Au thin film as a catalyst. ZnS nanowires had an NBE emission band at 430 nm in the violet region. The emission intensity was improved drastically by a process in which ZnS nanowires were heat-treated at $500^{\circ}C$ in an $O_2$ atmosphere for 45 minutes.

Microwave Dielectric Properties of Ca[(Li1/3Nb2/3)0.2Ti0.8]O3-δ Ceramics with Addition of Zn-B-O Glass Systems (Zn-B-O 글라스 첨가에 의한 Ca[(Li1/3Nb2/3)0.2Ti0.8]O3-δ 세라믹스의 마이크로파 유전특성)

  • In, Chi-Seung;Kim, Shi Yeon;Yeo, Dong-Hun;Shin, Hyo-Soon;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.781-785
    • /
    • 2016
  • With trend of the miniaturization and the high-functionalizing of mobile communication system, low-loss microwave dielectric materials are widely used for high frequency communication components. These dielectric materials should be co-sintered with highly electric-conducting metal such as silver or copper for high-frequency and thick film process application. Sintering temperature of $Ca(Li_{1/3}Nd_{2/3})_{0.2}Ti_{0.8}]O_{3-{\delta}}$, which has excellent dielectric properties such as ${\varepsilon}_r$ above 40, quality factor ($Q{\cdot}f_0$) above 16,000 GHz, and TCF (temperature coefficient of resonant frequency) of $-20{\sim}-10ppm/^{\circ}C$, is reported as high as $1,175^{\circ}C$, so it could not be co-sintered with silver or copper. Therefore in this study, low-temperature melting glasses of Zn-B-O and Zn-B-Si-O systems were added to $Ca[(Li_{1/3}Nb_{2/3})_{0.8}Ti_{0.2}]O_{3-{\delta}}$ to lower its sintering temperature under $900^{\circ}C$ without losing excellency of dielectric properties. With 15 weight % of Zn-B-Si-O glass and sintered at $875^{\circ}C$, specimen showed density of $4.11g/cm^3$, ${\varepsilon}_r$ of 40.1, $Q{\cdot}f_0$ of 4,869 GHz, and TCF of $-5.9ppm/^{\circ}C$. With 15 weight % of Zn-B-O glass and sintered at $875^{\circ}C$, specimen showed density of $4.14g/cm^3$, ${\varepsilon}_r$ of 40.4, $Q{\cdot}f_0$ of 7,059 GHz, and TCF of $-0.92ppm/^{\circ}C$.

Fabrication and characteristics of $ZnGa_2O_4$ phosphor thin film ($ZnGa_2O_4$ 형광체 박막의 제작 및 특성)

  • Kim, Yong-Chun;Hong, Beom-Joo;Kwon, Sang-Jik;Kim, Kyung-Hwan;Choi, Hyung-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.539-542
    • /
    • 2004
  • The $ZnGa_2O_4$ phosphor target is synthesized through solid-state reactions at the calcine temperature of $700^{\circ}C$ and sintering temperature of $1300^{\circ}C$ in order to deposit $ZnGa_2O_4$ phosphor thin film by rf magnetron sputtering system. The $ZnGa_2O_4$ phosphor thin film is deposited on Si(100) substrate and prepared $ZnGa_2O_4$ phosphor thin film is annealed by rapid thermal processor(RTP) at $700^{\circ}C$, 15sec. The x-ray diffraction patterns of $ZnGa_2O_4$ phosphor target and thin film show the position of (311) main peak. The cathodoluminescenre(CL) spectrums of $ZnGa_2O_4$ phosphor thin film show main peak of 420nm and maximum intensity at the substrate temperature of $500^{\circ}C$ and annealing temperature of $700^{\circ}C$ 15sec.

  • PDF