• Title/Summary/Keyword: SiGe Low noise amplifier

Search Result 13, Processing Time 0.022 seconds

Design of a Low Noise Amplifier for Wireless LAN (무선 근거리 통신망용 저잡음 증폭기의 설계)

  • 류지열;노석호;박세현
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1158-1165
    • /
    • 2004
  • This paper describes the design of a two stage 1V power supply SiGe Low Noise Amplifier operating at 5.25㎓ for 802.lla wireless LAN application. The achieved performance includes a gain of 17㏈, noise figure of 2.7㏈, reflection coefficient of 15㏈, IIP3 of -5㏈m, and 1-㏈ compression point of -14㏈m. The total power consumption of the circuit was 7㎽ including 0.5㎽ for the bias circuit.

Design of a 1V 5.25GHz SiGe Low Noise Amplifier (1V 5.25GHz SiGe 저잡음 증폭기 설계)

  • 류지열;노석호;박세현;박세훈;이정환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.630-634
    • /
    • 2004
  • This paper describes the design of a two stage 1V power supply SiGe Low Noise Amplifier operating at 5.25 GHa for 802.lla wireless LAN application. The achieved performance includes a gain of 17 ㏈, noise figure of 2.7㏈, reflection coefficient of 15 ㏈, IIP3 of -5 ㏈m, and 1-㏈ compression point of -14㏈m. The total power consumption of the circuit was 7 mW including 0.5mW for the bias circuit.

  • PDF

Design of a New RF Built-In Self-Test Circuit for 5.25GHz SiGe Low Noise Amplifier (5.25GHz 저잡음 증폭기를 위한 새로운 고주파 BIST 회로 설계)

  • 류지열;노석호;박세현;박세훈;이정환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.635-641
    • /
    • 2004
  • This paper presents a new low-cost RF Built-In Self-Test (BIST) circuit for measuring transducer voltage gain, noise figure and input impedance of 5.25GHa low noise amplifier (LNA). The BIST circuit is designed using 0.18${\mu}{\textrm}{m}$ SiGe technology. The test technique utilizes input impedance matching and output transient voltage measurements. The technique is simple and inexpensive. Total chip size has additional area of about 18% for BIST circuit.

  • PDF

Design of Ku-Band BiCMOS Low Noise Amplifier (Ku-대역 BiCMOS 저잡음 증폭기 설계)

  • Chang, Dong-Pil;Yom, In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.199-207
    • /
    • 2011
  • A Ku-band low noise amplifier has been designed and fabricated by using 0.25 um SiGe BiCMOS process. The developed Ku-band LNA RFIC which has been designed with hetero-junction bipolar transistor(HBT) in the BiCMOS process have noise figure about 2.0 dB and linear gain over 19 dB in the frequency range from 9 GHz to 14 GHz. Optimization technique for p-tap value and electro-magnetic(EM) simulation technique had been used to overcome the inaccuracy in the PDK provided from the foundry service company and to supply the insufficient inductor library. The finally fabricated low noise amplifier of two fabrication runs has been implemented with the size of $0.65\;mm{\times}0.55\;mm$. The pure amplifier circuit layout with the reduced size of $0.4\;mm{\times}0.4\;mm$ without the input and output RF pads and DC bais pads has been incorporated as low noise amplication stages in the multi-function RFIC for the active phased array antenna of Ku-band satellite VSAT.

Design of a New RF Buit-In Self-Test Circuit for Measuring 5GHz Low Noise Amplifier Specifications (5GHz 저잡음 증폭기의 성능검사를 위한 새로운 고주파 Built-In Self-Test 회로 설계)

  • Ryu Jee-Youl;Noh Seok-Ho;Park Se-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1705-1712
    • /
    • 2004
  • This paper presents a new low-cost RF Built-In Self-Test (BIST) circuit for measuring transducer voltage gain, noise figure and input impedance of 5.25GHz low noise amplifier (LNA). The BIST circuit is designed using 0.18${\mu}{\textrm}{m}$ SiGe technology. The test technique utilizes input impedance matching and output transient voltage measurements. The technique is simple and inexpensive. Total chip size has additional area of about 18% for BIST circuit.

Experimental investigation on the degradation of SiGe LNAs under different bias conditions induced by 3 MeV proton irradiation

  • Li, Zhuoqi;Liu, Shuhuan;Ren, Xiaotang;Adekoya, Mathew Adefusika;Zhang, Jun;Liu, Shuangying
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.661-665
    • /
    • 2022
  • The 3 MeV proton irradiation effects on SiGe low noise amplifier (LNA) (NXP BGU7005) performance under different voltage supply VCC (0 V, 2.5 V) conditions were firstly experimental studied in this present work. The S parameters including S11, S22, S21, 1 dB compression point and noise figure (NF) of the test samples under different bias voltage supply were measured and compared before and after 3 MeV proton irradiation. The total proton irradiation fluence was 1 × 1015 protons/cm2. The maximum degradation quantities of the gain S21 and NF of the test samples under zero bias are measured respectively 1.6 dB and 1.2 dB. Compared with the samples under 2.5 V bias supply, the maximum degradation of S21 and NF are respectively 1.1 dB and 0.8 dB in the whole frequency band. It is noteworthy that the gain and NF of SiGe LNAs under zero-bias mode suffer enhanced degradation compared with those under normal bias supply. The key influence factors are discussed based on the correlation of the SiGe device and the LNA circuit. Different process of the ionization damage and displacement damage under zero-bias and 2.5 V bias voltage supply contributed to the degradation difference. The underlying physical mechanisms are analyzed and investigated.

The Design of SiGe HBT LNA for IMT-2000 Mobile Application

  • Lee, Jei-Young;Lee, Geun-Ho;Niu, Guofu;Cressler, John D.;Kim, J.H.;Lee, J.C.;Lee, B.;Kim, N.Y.
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.1
    • /
    • pp.22-27
    • /
    • 2002
  • This paper describes a SiGe HBT low noise amplifier (LNA) design for IMT-2000 mobile applications. This LNA is optimized for linearity in consideration of the out-of-band-termination capacitance. This LNA yields a noise figure of 1.2 dB, 16 dB gain, an input return loss of 11 dB, and an output return loss of 14.3 dB over the desired frequency range (2.11-2.17 GHz). When the RF input power is -2i dBm, the input third order intercept point (IIP3) of 8.415 dBm and the output third order intercept point (OIP3) of 24.415 dBm are achieved.

3-Gb/s 60-GHz Link With SiGe BiCMOS Receiver Front-End and CMOS Mixed-Mode QPSK Demodulator

  • Ko, Min-Su;Kim, Du-Ho;Rucker, Holger;Choi, Woo-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.256-261
    • /
    • 2011
  • We demonstrate 3-Gb/s wireless link using a 60-GHz receiver front-end fabricated in $0.25-{\mu}m$ SiGe:C bipolar complementary metal oxide semiconductor (BiCMOS) and a mixed-mode quadrature phase-shift keying (QPSK) demodulator fabricated in 60-nm CMOS. The 60-GHz receiver consists of a low-noise amplifier and a down-conversion mixer. It has the peak conversion gain of 16 dB at 62 GHz and the 3-dB intermediate-frequency bandwidth of 6 GHz. The demodulator using 1-bit sampling scheme can demodulate up to 4.8-Gb/s QPSK signals. We achieve successful transmission of 3-Gb/s data in 60 GHz through 2-m wireless link.

A Programmable Compensation Circuit for System-on-Chip Application

  • Choi, Woo-Chang;Ryu, Jee-Youl
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.3
    • /
    • pp.198-206
    • /
    • 2011
  • This paper presents a new programmable compensation circuit (PCC) for a System-on-Chip (SoC). The PCC is integrated with $0.18-{\mu}m$ BiCMOS SiGe technology. It consists of RF Design-for-Testability (DFT) circuit, Resistor Array Bank (RAB) and digital signal processor (DSP). To verify performance of the PCC we built a 5-GHz low noise amplifier (LNA) with an on-chip RAB using the same technology. Proposed circuit helps it to provide DC output voltages, hence, making the RF system chain automatic. It automatically adjusts performance of an LNA with the processor in the SoC when it goes out of the normal range of operation. The PCC also compensates abnormal operation due to the unusual PVT (Process, Voltage and Thermal) variations in RF circuits.

A New Automatic Compensation Network for System-on-Chip Transceivers

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.371-380
    • /
    • 2007
  • This paper proposes a new automatic compensation network (ACN) for a system-on-chip (SoC) transceiver. We built a 5 GHz low noise amplifier (LNA) with an on-chip ACN using 0.18 ${\mu}m$ SiGe technology. This network is extremely useful for today's radio frequency (RF) integrated circuit devices in a complete RF transceiver environment. The network comprises an RF design-for-testability (DFT) circuit, capacitor mirror banks, and a digital signal processor. The RF DFT circuit consists of a test amplifier and RF peak detectors. The RF DFT circuit helps the network to provide DC output voltages, which makes the compensation network automatic. The proposed technique utilizes output DC voltage measurements and these measured values are translated into the LNA specifications such as input impedance, gain, and noise figure using the developed mathematical equations. The ACN automatically adjusts the performance of the 5 GHz LNA with the processor in the SoC transceiver when the LNA goes out of the normal range of operation. The ACN compensates abnormal operation due to unusual thermal variation or unusual process variation. The ACN is simple, inexpensive and suitable for a complete RF transceiver environment.

  • PDF