• Title/Summary/Keyword: SiCp/AC8A Composites

Search Result 2, Processing Time 0.015 seconds

Mechanical Properties of SiCp/AC8A Composites Fabricated by Pressureless Metal Infiltration Process (무가압함침법으로 제조한 SiCp/AC8A 복합재료의 기계적 성질)

  • 김재동;고성위;김형진
    • Composites Research
    • /
    • v.15 no.3
    • /
    • pp.1-10
    • /
    • 2002
  • The effect of size of SiC particles and additive Mg content on the mechanical properties and wear characteristics were investigated for the SiCp/AC8A composites fabricated by pressureless infiltration process. Results showed that the hardness and the bending strength increased with decreasing the size of SiC particle. By increasing the Mg content the hardness of SiCp/AC8A composites increased due to the hard reaction products, however the bending strength decreased by formation of coarse precipitates and high porosity level. The SiCp/AC8A composites exhibited about 6 times higher wear resistance compared with AC8A alloy at high sliding velocity and as increasing the particle size, wear resistance was improved. The major wear mechanical of SiCp/AC8A composites exhibited the abrasive wear at low to high sliding velocity whereas AC8A alloy showed adhesive and melt wear at high sliding velocity.

Fabrication and Characteristics of SiCp/AC8A Composites by Pressureless Metal Infiltration Process (무가압함침법에 의한 SiCp/AC8A 복합재료의 제조 및 특성)

  • 김재동;고성위
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.139-142
    • /
    • 2000
  • The SiCp/AC8A composites were fabricated by the pressureless metal infiltration process successfully. The effect of additional Mg, which were mixed with SiC particles to promote interfacial wetting between the reinforcement and matrix alloy, and particle size on the mechanical properties was investigated. By increasing the additional Mg content the hardness of SiCp/AC8A composites was increased due to the hard reaction products, but the bending strength was decreased by the excess reaction of Mg and high porosity level when the additional Mg content is over 7%. The Hardness and bending strength was increased by decreasing the size of SiC particle.

  • PDF