• Title/Summary/Keyword: SiC-TiC composites

Search Result 121, Processing Time 0.026 seconds

Al-10wt%Ti-4wt%F Alloys as In-situ Composites through Rapid Solidification(II) (급냉응고법에 의한 In-Situ 복합재료로서의 Al-10wt%Ti-4wt%Fe 합금 (II))

  • Kim, Hye-Seong;Jeong, Jae-Pil;Gwon, Suk-In;Geum, Dong-Hwa
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1127-1132
    • /
    • 1998
  • The possibilities of producing Al-10%Ti-4%Fe composites through in-situ processing and thus achieving mechanical property improvements over binary Al-10%Ti to a level or higher exhibited by PM SiC/A12124 composites were explored in this study. The microstructure of in-situ processed Al-10%Ti-4%Fe composites was similar to that of Al matrix composites reinforced with discontinuous SiC particulates(SiC/A12124) and significant enhancements in elastic modulus, tensile strength and wear resistance were observed as compared to Al-10%Ti alloy. These results can be attributed to the in-situ formed Al. Fe by third element addition, leading to additional dispersion strengthening effect over $Al_3Ti$ phase reinforcement in Al-Ti system.

  • PDF

Cutting Characteristics of SiC-based Ceramic Cutting Tools Part 1: Microstructure and Mechanical Properties of SiC-based Ceramic Cutting Tools (SiC계 세라믹 절삭공구의 절삭특성 평가 Part 1: SiC계 절삭공구의 미세구조와 기계적 특성)

  • Park, June-Seuk;Kim, Kyeug-Jae;Shim, Wan-Hee;Kwon, Won-Tae;Kim, Young-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.82-88
    • /
    • 2001
  • In order to fulfil the requirements of the various performance profiles of ceramic cutting tools, six different SiC-based ceramics have been fabricated by hot-pressing (SiC--${Si}_3 {N}_4$composites) or by hot-pressing and subsequent annealing (monolithic SiC and SiC-TiC composites). Correlation between the annealing time and the corresponding microstructure and the mechanical properties of resulting ceramics have been investigated. The grain size of both ${Si}_3 {N}_4$and SiC in SiC-${Si}_3 {N}_4$composites increased with the annealing time. Monolithic SiC has the highest hardness, SiC-TiC composite the highest toughness, and the SiC-${Si}_3 {N}_4$composite the highest strength among the ceramics investigated. The hardness of SiC-${Si}_3 {N}_4$composites was relatively independent of the grain size, but dependent on the sintered density. The cutting performance of the newly developed SiC-based ceramic cutting tools will be described in Part 2 of this paper.

  • PDF

Effect of TiC and AlN on the Wear Behavior and Mechanical Properties of Hypereutectic Al-Si Alloys (과공정 Al-Si 합금의 마모 거동과 기계적 성질에 미치는 TiC와 AlN의 영향)

  • Ju, Seung Hwan;Choi, Jin Myung;Kim, Yong Jin;Park, Ik Min;Park, Yong Ho
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.1003-1008
    • /
    • 2010
  • In this study, the effect of the reinforcement on the wear behaviour and mechanical properties of hypereutectic Al-Si alloys was investigated. The Gas atomized hypereutectic Al-20Si alloy powders were mixed with 1, 3, and 5 wt.% AlN and TiC ceramic particles and consolidated by hotpress. The Al-20Si powder has both finely dispersed primary Si phases and eutectic structures. The Al-20Si-AlN, TiC composites showed that the reinforcements were distributed along the boundary of the Al-20Si alloy. The UTS increased with increasing the AlN, TiC contents. At a lower load, with an increasing weight fraction of reinforcements, the wear rate decreased in both composites and the wear mechanism was adhesive wear. At a higher load, the shape of the debris changes the mechanism of the AlN composites to abrasive-adhesion wear and this resulted in an increase of the wear rate.

Microstructures and Mechanical Properties of $SiC/TiB_2$ Composites ($SiC/TiB_2$ 복합체의 미세구조와 기계적 특성)

  • 윤재돈
    • Journal of Powder Materials
    • /
    • v.2 no.3
    • /
    • pp.216-222
    • /
    • 1995
  • $SiC/TiB_2$ composites of varying $TiB_2$ content from 0 to 52 vol.% were prepared by pressureless sintering. When these composites were sintered at $2150^{\circ}C$ the mechanical properties such as elastic modulus, strength and toughness increased with increasing $TiB_2$ content. On the other hand, at a sintering temperature of $2200^{\circ}C$, the mechanical properties reduced gradually with increasing $TiB_2$ content. The main reason was deduced from the onset of spontaneous microcracking and the critical particle size for microcracking was calculated approximately 5.6 $\mu\textrm{m}$.

  • PDF

Effect of Annealing Temperature on the Properties of $\beta$ -SiC-Ti $B_2$ Electrocondutive Ceramic Composites by Spray Dry (Spray Dry한 $\beta$-SiC-Ti $B_2$ 도전성 세라믹 복합체의 특성에 미치는 Annealing 온도)

  • 신용덕;주진영;최광수;오상수;서재호
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.8
    • /
    • pp.335-341
    • /
    • 2003
  • The composites were fabricated respectively 61vo1.% $\beta$ -SiC and 39vo1.% Ti $B_2$ spray-dried powders with the liquid forming additives of l2wt% $Al_2$ $O_3$$Y_2$ $O_3$ by pressureless annealing at 1$700^{\circ}C$, 175$0^{\circ}C$, 180$0^{\circ}C$ for 4 hours. The result of phase analysis of composites by XRD revealed $\alpha$ -SiC(6H), Ti $B_2$, and YAG(A $l_{5}$ $Y_3$ $O_{12}$ ) crystal phase. The relative density, the Young's modulus and fracture toughness showed respectively the highest value of 92.97%, 92.88Gpa and 4.4Mpaㆍ $m^{\frac{1}{2}}$ for composites by pressureless annealing temperature 1$700^{\circ}C$ at room temperature. The electrical resistivity showed the lowest value of 8.09${\times}$10$^{-3}$ ㆍcm for composite by pressureless annealing temperature 1$700^{\circ}C$ at $25^{\circ}C$. The electrical resistivity of the SiC-Ti $B_2$ composites was all positive temperature cofficient resistance(PTCR) in the temperature ranges from $25^{\circ}C$ to $700^{\circ}C$.

Effects of Boride on Microstructure and Properties of the Electroconductive Ceramic Composites of Liquid-Phase-Sintered Silicon Carbide System (액상소결(液狀燒結)한 SiC계(系)의 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 Boride의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1602-1608
    • /
    • 2007
  • The composites were fabricated, respectively, using 61[vol.%] SiC-39[vol.%] $TiB_2$ and using 61[vol.%] SiC-39[vol.%] $ZrB_2$ powders with the liquid forming additives of 12[wt%] $Al_2O_3+Y_2O_3$ by hot pressing annealing at $1650[^{\circ}C]$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, $ZrB_2$ were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H, 3C), $TiB_2$, $ZrB_2$ and $YAG(Al_5Y_3O_{12})$ crystal phase on the Liquid-Phase-Sintered(LPS) $SiC-TiB_2$, and $SiC-ZrB_2$ composite. $\beta\rightarrow\alpha-SiC$ phase transformation was occurred on the $SiC-TiB_2$ and $SiC-ZrB_2$ composite. The relative density, the flexural strength and Young's modulus showed the highest value of 98.57[%], 249.42[MPa] and 91.64[GPa] in $SiC-ZrB_2$ composite at room temperature respectively. The electrical resistivity showed the lowest value of $7.96{\times}10^{-4}[\Omega{\cdot}cm]$ for $SiC-ZrB_2$ composite at $25[^{\circ}C]$. The electrical resistivity of the $SiC-TiB_2$ and $SiC-ZrB_2$ composite was all positive temperature coefficient resistance (PTCR) in the temperature ranges from $25[^{\circ}C]$ to $700[^{\circ}C]$. The resistance temperature coefficient of composite showed the lowest value of $1.319\times10^{-3}/[^{\circ}C]$ for $SiC-ZrB_2$ composite in the temperature ranges from $100[^{\circ}C]$ to $300[^{\circ}C]$ Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites.

Study of Basic Properties to Develope SiC Ceramic Heater by Self-Charge with Electricity (자기 통전식 SiC세라믹 발열체 개발을 위한 기초 특성 연구)

  • Shin, Yong-Deok;Ko, Tae-Hun;Ju, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.124-125
    • /
    • 2007
  • The composites were fabricated $\beta$-SiC and $TiB_2$ powders with the liquid forming additives of 8, 12, 16[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid by pressureless annealing at $1,650[^{\circ}C]$ for 4 hours. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. The relative density, the flexural strength, the Young's modulus and the Vicker's hardness showed the highest value of 82.29[%], 189.5[MPa], 54.60 [GPa] and 2.84[GPa] for SiC-$TiB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature. The relative density of SiC-$TiB_2$ composites was lowered due to gaseous products of the result of reaction between SiC and $Al_2O_3+Y_2O_3$. The electrical resistivity showed the lowest value of 0.012[${\Omega}{\cdot}cm$] for 16[wt%] at 25[$^{\circ}C$]. The electrical resistivity was all negative temperature coefficient resistance (NTCR) in the temperature ranges from 25[$^{\circ}C$] to 700[$^{\circ}C$].

  • PDF

Properties of the $\beta-SiC-TiB_2$ Composites with $Al_2O_3+Y_2O_3$ additives ($Al_2O_3+Y_2O_3를 첨가한 {\beta}-SiC-TiB_2$ 복합체의 특성)

  • Yim, Seung-Hyuk;Shin, Yong-Deok;Ju, Jin-Young;Yoon, Se-Won;Song, Joon-Tae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.7
    • /
    • pp.394-399
    • /
    • 2000
  • The mechanical and electrical properties of pressed and annealed $\beta-SiC-TiB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of $Al_2O_3+Y_2O_3$. Phase analysis of composites by XRD revealed $\alpha$-SiC(6H), TiB2, and (Al5Y3O12). Reaction between Al2O3 and $Y_2O_3$ formed YAG but the relative density decreased with increasing $Al_2O_3+Y_2O_3$ contents. The Flexural strength showed the value of 458.9 MPa for composites added with 4 wt% $Al_2O_3+Y_2O_3$ additives at room temperatures. Owing to crack deflection and crack bridging, the fracture toughness showed 6.2, 6.0 and 6.6 MPa.m1/2 for composites added with 4, 8 and 12 wt% Al2O3+Y2O3 additives respectively at room temperature. The resistance temperature coefficient showed the value of $3.6\times10^{-3},\; 2.9\times10^{-3}\; and\; 3.0\times10^{-3} /^{\circ}C$$^{\circ}C$ for composite added with 4, 8 and 12 wt% $Al_2O_3+Y_2O_3$additives respectively at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $25^{\circ}C\; to\; 700^{\circ}$.

  • PDF

Properties of ${\beta}$-SiC-$TiB_2$ Electrocondutive Ceramic Composites by Spray Dry (Spray Dry한 ${\beta}$-SiC-$TiB_2$ 도전성(導電性) 세라믹 복합체(複合體)의 특성(特性))

  • Shin, Yong-Deok;Ju, Jing-Young;Choi, Kwang-Soo;Oh, Sang-Soo;Lee, Dong-Yoon;Yim, Seung-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1538-1540
    • /
    • 2003
  • The composites were fabricated respectively 61vol.% ${\beta}$-SiC and 39vol.% $TiB_2$ spray-dried powders with the liquid forming additives of 12wt% $Al_2O_3+Y_2O_3$ by pressureless annealing at $1700^{\circ}C,\;1750^{\circ}C\;1800^{\circ}C$ for 4 hours. The result of phase analysis of composites by XRD revealed ${\alpha}$-SiC(6H), $TiB_2$, and YAG($Al_5Y_3O_{12}$) crystal phase. The relative density, the Young's modulus and fracture toughness showed respectively the highest value of 92.97%, 92.88Gpa and $4.4Mpa{\cdot}m^{1/2}$ for composites by pressureless annealing temperature $1700^{\circ}C$ at room temperature. The electrical resistivity showed the lowest value of $8.09{\times}10^{-3}{\Omega}{\cdot}cm$ for composite by pressureless annealing tempe rature $1700^{\circ}C$ at $25^{\circ}C$. The electrical resistivity of the SiC-$TiB_2$ composites was all positive temperature cofficient resistance (PTCR) in the temperature ranges from $25^{\circ}C$ to $700^{\circ}C$.

  • PDF

Thermal Sprayed AlSiMg/TiC Composite Coatings : Fabrication of Powder and Characteristics of Coatings (I) (AlSiMg/TiC 복합 용사 피막 : 분말제조 및 피막 특성(I))

  • 양병모;변응선;박경채
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.98-104
    • /
    • 2000
  • Aluminum alloys are being employed in automobile parts as strive to reduce overall vehicle weight to meet demands for improved fuel economy and reduction in vehicle emissions. Al-based composites reinforced with ceramic ($Al_2O_3,\;SiC,\;TiC\;and\;B_4C$) applications in a variety of components in automotive engines, such as liners, where the tribological properties of the material are important. In this study, Al-base composites reinforced with TiC particle powders has been developed for producing plasma spray coatings. The composite plasma spray powders were prepared Al-13Si-3Mg(wt%) alloy with TiC(40, 60 and 80wt%) particles ($0.2~5{\mu}textrm{m}$) by drum type ball milling. The composite powders ($36~76{\mu}textrm{m}$) were sprayed with plasma torch. Plasma sprayed coatings were heat-treated at $500^{\circ}C$ for 3 hours. The wear resistances of the plasma sprayed coatings were found to decrease with increasing TiC content and improved with heat treatment. AlSiMg-40% TiC heat-treated coatings were showed the best wear resistance in this study.

  • PDF