• Title/Summary/Keyword: SiC-C films

Search Result 2,106, Processing Time 0.024 seconds

Fabrication of 1 ㎛ Thickness Lead Zirconium Titanate Films Using Poly(N-vinylpyrrolidone) Added Sol-gel Method

  • Oh, Seung-Min;Kang, Min-Gyu;Do, Young-Ho;Kang, Chong-Yun;Yoon, Seok-Jin;Nahm, Sahn
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.5
    • /
    • pp.222-225
    • /
    • 2011
  • Lead zirconate titanate (PZT) films were fabricated on Pt/Ti/$SiO_2$/Si substrate by the sol-gel method using a sol containing poly(N-vinylpyrrolidone) (PVP). PVP in alkoxide solutions can suppress the condensation reaction in gel films during heat treatment, and increase the viscosity of alkoxide solutions. Single-phase PZT films as thick as 1 ${\mu}m$ were deposited by repetitive coating with successive third-step heat treatments at 150$^{\circ}C$, 350$^{\circ}C$ and 650$^{\circ}C$. After heat treatment, the films were crack free, and optically transparent. As a result, we demonstrated a PZT film with a PVP molar ratio of 0.5, which has a permittivity of 734, a dielectric loss of 0.042, a $P_r$ of 40.5 ${\mu}C/cm^2$ and an $E_c$ of 156 kV/cm.

Preparation of $(Bi,La)Ti_{3}O_{12}$ Thin Films on $Al_{2}O_{3}/Si$ Substrates by the Sol-Gel Method

  • Chang, Ho Jung;Hwang, Sun Hwan;Chang, Ho Sung;Sawada, K.;Ishida, M.
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.69-71
    • /
    • 2002
  • $(Bi, La)Ti_{3}O_{12}(BLT)$ ferroelectric thin films were prepared on $Al_{2}O_{3}/Si$ substrates by the sol-gel method. The as-coated films were post-annealed at the temperature of $650^{\circ}C$ and $700^{\circ}C$ for 30 min. The crystallinty, surface morphologies and electrical properties were affected by the annealing temperatures. The BLT films annealed at above $650^{\circ}C$ exhibited typical bismuth layered perovskite structures with (00$\ell$) preferred orientation. The granular shaped grains with a size of approximately 90nm was formed in the film sample annealed at $700^{\circ}C$. The memory window volatge of the BLT film was 2.5V. The leakage current of BLT films annealed at $650^{\circ}C$ was about $1\times10^{-7}A/\textrm{cm}^2$ at 3V.

  • PDF

Development of a Metal Cladding with Protective SiC Composites and the Characteristics on High temperature Oxidation (SiC 복합체 보호막 금속 피복관의 개발 및 고온산화 특성 분석)

  • Noh, Seonho;Lee, Dong-hee;Park, Kwangheon
    • Journal of Surface Science and Engineering
    • /
    • v.48 no.5
    • /
    • pp.218-226
    • /
    • 2015
  • The goal of this study is to investigate a metal cladding that contains SiC composites as a protective layer and analysis the characteristics of the specimens on high temperature oxidation To make SiC composites, the current process needs a high temperature (about $1100^{\circ}C$) for the infiltration of fixing materials such as SiC. To improve this situation, we need a low temperature process. In this study, we developed a low temperature process for making SiC composites on the metal layer, and we have made two kinds: cladding with protective SiC composites made by polycarbosilane(PCS), and a PCS filling method using supercritical carbon dioxide. A corrosion test at $1200^{\circ}C$ in a mixed steam and Ar atmosphere was performed on these specimens. The result show that the cladding with protective SiC composites have excellent oxidation suprression rates. This study can be said to have developed new metal cladding with enhanced durability by using SiC composite as protective films of metal cladding instead of simple coating film.

Microstructure and electrical properties of PZT thin films by sonicated sol in an ultrasonic bath (초음파 처리된 sol로 제조된 PZT 박막의 미세구조 및 전기적 특성)

  • 김종국;박병옥
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.101-106
    • /
    • 1999
  • Pb$(Zr_{0.5},Ti_{0.5})O_3$ thin films were prepared on $Pt/Ti/SiO_2/Si$substrates by spin-coating. The sol was sonicated in an ultrasonic bath to promoto homogenization and the results were compared with untreated case. In the case of PZT thin films prepared from sonicated sol, only perovskite phase was obtained at $550^{\circ}C$ and "rosette" structures in the films disappeared. Dieletric constants (10kHz), remnant polarization, and coercive field of the films prepared from untreated and sonicated sol were 335 and 443, 12.3 and17.7$\mu$C/$\textrm{cm}^2$, 168.4 and 153.5 kV/cm. Electrical properties were improved by introduction of the sonication processon process

  • PDF

Growth and Characteristics of SrBi2Nb2O9 Thin Films for Memory Devices (메모리 소자에의 응용을 위한 SrBi2Nb2O9 박막의 성장 및 전기적 특성)

  • Gang, Dong-Hun;Choe, Hun-Sang;Lee, Jong-Han;Im, Geun-Sik;Jang, Yu-Min;Choe, In-Hun
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.464-469
    • /
    • 2002
  • $SrBi_2Nb_2O_9(SBN)$ thin films were grown on Pt/Ti/Si and p-type Si(100) substrates by rf-magnetron co-sputtering method using two ceramic targets, $SrNb_2O_6\; and \;Bi_2O_3$. The structural and electrical characteristics have been investigated to confirm the possibility of the SBN thin films for the applications to destructive and nondestructive read out ferroelectric random access memory(FRAM). For the optimum growth condition X-ray diffraction patterns showed that SBN films had well crystallized Bi-layered perovskite structure after $700^{\circ}C$ heat-treatment in furnace. From this specimen we got remnant polarization $(2P_r)$ of about 6 uC/$\textrm{cm}^2$ and coercive voltage $(V_c)$ of about 1.5 V at an applied voltage of 5 V. The leakage current density was $7.6{\times}10^{-7}$/A/$\textrm{cm}^2$ at an applied voltage of 5V. And for the NDRO-FRAM application, properties of SBN films on Si substrate has been investigated. From transmission electron microscopy (TEM) analysis, we found the furnace treated sample had a native oxide about 2 times thicker than the RTA treated sample and this thick native oxide layer had a bad effect on C-V characteristics of SBN/Si thin film. After $650^{\circ}C$ RTA process, we got the improved memory window of 1.3 V at an applied voltage of 5 V.

[ $a-Si:H/{\mu}c-Si:H$ ] thin-film tandem solar cells (비정질/마이크로 탠덤 구조형 실리콘 박막 태양전지)

  • Lee, Jeong-Chul;Song, Jin-Soo;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.228-231
    • /
    • 2006
  • This paper briefly introduces silicon based thin film solar cells: amorphous (a-Si:H), microcrystalline ${\mu}c-Si:H$ single junction and $a-Si:H/{\mu}c-Si:H$ tandem solar cells. The major difference of a-Si:H and ${\mu}c-Si:H$ cells comes from electro-optical properties of intrinsic Si-films (active layer) that absorb incident photon and generate electron-hole pairs. The a-Si:H film has energy band-gap (Eg) of 1.7-1.8eV and solar cells incorporating this wide Eg a-Si:H material as active layer commonly give high voltage and low current, when illuminated, compared to ${\mu}c-Si:H$ solar cells that employ low Eg (1.1eV) material. This Eg difference of two materials make possible tandem configuration in order to effectively use incident photon energy. The $a-Si:H/{\mu}c-Si:H$ tandem solar cells, therefore, have a great potential for low cost photovoltaic device by its various advantages such as low material cost by thin-film structure on low cost substrate instead of expensive c-Si wafer and high conversion efficiency by tandem structure. In this paper, the structure, process and operation properties of Si-based thin-film solar cells are discussed.

  • PDF

The Study of Formation of Ti-silicide deposited with Composite Target [II] (Composite Target으로 증착된 Ti-silicide의 현성에 관한 연구[II])

  • Choi, Jin-Seog;Paek, Su-Hyon;Song, Young-Sik;Sim, Tae-Un;Lee, Jong-Gil
    • Korean Journal of Materials Research
    • /
    • v.1 no.4
    • /
    • pp.191-197
    • /
    • 1991
  • The surface roughnesses of titanium silicide films and the diffusion behaviours of dopants in single crystal and polycrystalline silicon substrates durng titanium silicide formation by rapid thermal annealing(RTA) of sputter deposited Ti-filicide film from the composite $TiSi_{2.6}$ target were investigated by the secondary ion mass spectrometry(SIMS), a four-point probe, X-ray diffraction, and surface roughness measurements. The as-deposited films were amorphous but film prepared on single silicon substrate crystallized to the orthorhombic $TiSi_2$(C54 structure) upon rapid thermal annealing(RTA) at $800^{\circ}C$ for 20sec. There was no significant out-diffusion of dopants from both single crystal and polycrystalline silicon substrate into titanum silicide layers during annealing. Most of the implanted dopants piled up near the titanium silicide/silicon interface. The surface roughnesses of titanium silicide films were in the range between 16 and 22nm.

  • PDF

Growth of SiC Oxidation Protective Coating Layers on graphite substrates Using Single Source Precursors

  • Kim, Myung-Chan;Heo, Cheol-Ho;Park, Jin-Hyo;Park, Seung-Jun;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.122-122
    • /
    • 1999
  • Graphite with its advantages of high thermal conductivity, low thermal expansion coefficient, and low elasticity, has been widely used as a structural material for high temperature. However, graphite can easily react with oxygen at even low temperature as 40$0^{\circ}C$, resulting in CO2 formation. In order to apply the graphite to high temperature structural material, therefore, it is necessary to improve its oxidation resistive property. Silicon Carbide (SiC) is a semiconductor material for high-temperature, radiation-resistant, and high power/high frequency electronic devices due to its excellent properties. Conventional chemical vapor deposited SiC films has also been widely used as a coating materials for structural applications because of its outstanding properties such as high thermal conductivity, high microhardness, good chemical resistant for oxidation. Therefore, SiC with similar thermal expansion coefficient as graphite is recently considered to be a g행 candidate material for protective coating operating at high temperature, corrosive, and high-wear environments. Due to large lattice mismatch (~50%), however, it was very difficult to grow thick SiC layer on graphite surface. In theis study, we have deposited thick SiC thin films on graphite substrates at temperature range of 700-85$0^{\circ}C$ using single molecular precursors by both thermal MOCVD and PEMOCVD methods for oxidation protection wear and tribological coating . Two organosilicon compounds such as diethylmethylsilane (EDMS), (Et)2SiH(CH3), and hexamethyldisilane (HMDS),(CH3)Si-Si(CH3)3, were utilized as single source precursors, and hydrogen and Ar were used as a bubbler and carrier gas. Polycrystalline cubic SiC protective layers in [110] direction were successfully grown on graphite substrates at temperature as low as 80$0^{\circ}C$ from HMDS by PEMOCVD. In the case of thermal MOCVD, on the other hand, only amorphous SiC layers were obtained with either HMDS or DMS at 85$0^{\circ}C$. We compared the difference of crystal quality and physical properties of the PEMOCVD was highly effective process in improving the characteristics of the a SiC protective layers grown by thermal MOCVD and PEMOCVD method and confirmed that PEMOCVD was highly effective process in improving the characteristics of the SiC layer properties compared to those grown by thermal MOCVD. The as-grown samples were characterized in situ with OES and RGA and ex situ with XRD, XPS, and SEM. The mechanical and oxidation-resistant properties have been checked. The optimum SiC film was obtained at 85$0^{\circ}C$ and RF power of 200W. The maximum deposition rate and microhardness are 2$mu extrm{m}$/h and 4,336kg/mm2 Hv, respectively. The hardness was strongly influenced with the stoichiometry of SiC protective layers.

  • PDF

The Electrical Properties and Residual Stress of Pb(Zr,Ti)O$_3$ Piezoelectric Thin Films fabricated by 2- Step Deposition Method (2단계 증착법으로 제조된 Pb(Zr, Ti)O$_3$압전 박막의 전기적 특성 및 잔류 응력에 관한 연구)

  • Kim, Hyuk-Hwan;Lee, Kang-Woon;Lee, Won-Jong;Nam, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.769-775
    • /
    • 2001
  • High quality PZT piezoelectric thin films were sputter- deposited on$ RuO_2$/$SiO_2$/Si substrates by using 2-step deposition method. As the first step, PZT seed layers were fabricated at a low temperature($475^{\circ}C$ ) to form a pure perovskite phase by reducing the volatility of Pb oxide. and then, as the second step, the PZT films were deposited at high temperatures ($530^{\circ}C$~$570^{\circ}C$) to reduce the defect density in the films. By this method, the pure perovskite phase was obtained at high deposition temperature range ($530^{\circ}C$~$570^{\circ}C$) and the superior electrical properties of PZT films were obtained on $RuO_2$substrate : 2Pr : 60$\mu$C/$\textrm{cm}^2$, $E_c: 60kV/cm, \;J_t: 10^{-6}A/cm^2\; at\; 250kV/cm$. The residual stress of PZT films fabricated by the 2-step deposition method was tensile and below 150MPa. It was attempted to control the residual stress in the PZT films by applying a negative bias to the substrate. As the amplitude of the substrate bias was increased, the residual tensile stress was slightly decreased, however, the ferroelectric properties of PZT films were degraded by ion bombardment.

  • PDF

Study for ohmic contact of polycrystalline 3C-SiC/TiW (다결정 3C-SiC/TiW Ohmic Contact에 관한 연구)

  • On, Chang-Min;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1311-1312
    • /
    • 2006
  • This paper describes the ohmic contact formation between a TiW film as a contact material deposied by RF magnetron sputter and polycrystalline 3C-SiC films deposied on thermally grown Si wafers. The specific contact resistance (${\rho}_c$) of the TiW contact was measured by using 4he C-TLM. The contact phase and interfacial reaction between TiW and 3C-SiC at high-temperature were also analyzed by XRD and SEM. All of the samples didn't show cracks of the TiW film and any interfacial reaction after annealing. Especially, when the sample was annealed at $800^{\circ}$ for 30min., the lowest contact resistivity of $2.90{\times}10^{-5}{\Omega}{\cdot}cm^2$ of was obtained due to the improved interfacial adhesion.

  • PDF