• Title/Summary/Keyword: SiC-C films

Search Result 2,101, Processing Time 0.032 seconds

Copper Film Growth by Chemical Vapor Deposition: Influence of the Seeding Layer (ICB seeding에 의한 CVD Cu 박막의 증착 및 특성 분석)

  • Yoon, Kyoung-Ryul;Choi, Doo-Jin;Kim, Seok;Kim, Ki-Hwan;Koh, Seok-Keun
    • Korean Journal of Materials Research
    • /
    • v.6 no.7
    • /
    • pp.723-732
    • /
    • 1996
  • Cu films were deposited by chemical wapor deposition on the as-received substrates (TiN/Si) and three kinds of Cu-seeded substrates (Cu/TiN/Si) which had seeding layer in the thick ness of 5 ${\AA}$ and 130 ${\AA}$ coated by ICB(Ionized Cluster Beam) method. The effect of Cu seeding layers on the growth rate, crystallinity, grain size uniformity and film adhesion strength of final CVD-Cu films was investigated by scanning eletron microscopy(SEM), X-ray diffractometry and scratch test. The growth rate was found to incresase somewhat in the case of ICB-seeding. The XRD patterns of the Cu films on the as-received substrate and ICB Cu-seeded substrates exhibited the diffraction peaks corresponding to FCC phase, but the peak intensity ratio($I_{111}/I_{200}$) of Cu films deposited on the ICB Cu-seeded substrates increased compared with that of Cu films on the as-received substrate. The resistivity of final Cu film on 40 ${\AA}$ seeded substrate was observed as the lowest value, 2.42 $\mu\Omega\cdot$cm compared with other Cu films. In adhesion test, as the seeding thickness increased from zero to 130 ${\AA}$, the adhesion strength increased from 21N to 27N.

  • PDF

Crystallographic and Interfacial Characterization of Al2O3 and ZrO2 Dielectric Films Prepared by Atomic Layer Chemical Vapor Deposition on the Si Substrate (Si 기판에서 원자층 화학 기상 증착법으로 제조된 Al2O3 및 ZrO2 유전 박막의 결정학적 특성 및 계면 구조 평가)

  • Kim, Joong-Jung;Yang, Jun-Mo;Lim, Kwan-Yong;Cho, Heung-Jae;Kim, Won;Park, Ju-Chul;Lee, Soun-Young;Kim, Jeong-Sun;Kim, Geun-Hong;Park, Dae-Gyu
    • Korean Journal of Materials Research
    • /
    • v.13 no.8
    • /
    • pp.497-502
    • /
    • 2003
  • Crystallographic characteristics and interfacial structures of $Al_2$$O_3$and $ZrO_2$dielectric films prepared by atomic layer chemical vapor deposition (ALCVD) were investigated at atomic scale by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS)/electron energy-loss spectroscopy (EELS) coupled with a field-emission transmission electron microscope. The results obtained from cross-sectional and plan-view specimens showed that the $Al_2$$O_3$film was crystallized by annealing at a high temperature and its crystal system might be evaluated as either cubic or tetragonal phase. Whereas the $ZrO_2$film crystallized during deposition at a low temperature of ∼$300^{\circ}C$ was composed of both tetragonal and monoclinic phase. The interfacial thickness in both films was increased with the increased annealing temperature. Further, the interfacial structures of X$ZrO_2$$O_3$and $ZrO_2$films were discussed through analyses of EDS elemental maps and EELS spectra obtained from the annealed films, respectively.

Formation of a MnSixOy barrier with Cu-Mn alloy film deposited using PEALD

  • Moon, Dae-Yong;Hwang, Chang-Mook;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.229-229
    • /
    • 2010
  • With the scaling down of ultra large integrated circuits (ULSI) to the sub-50 nm technology node, the need for an ultra-thin, continuous and conformal diffusion barrier and Cu seed layer is increasing. However, diffusion barrier and Cu seed layer formation with a physical vapor deposition (PVD) method has become difficult as the technology node is reduced to 30 nm and beyond. Recent work on self-forming barrier processes using PVD Cu alloys have attracted great attention due to the capability of conformal ultra-thin barrier formation using a simple technique. However, as in the case of the conventional barrier and Cu seed layer, PVD of the Cu alloy seed layer will eventually encounter the difficulty in conformal deposition in narrow line trenches and via holes. Atomic layer deposition (ALD) has been known for its good step coverage and precise thickness control, and is a candidate technique for the formation of a thin conformal barrier layer and Cu seed layer. Conformal Cu-Mn seed layers were deposited by plasma enhanced atomic layer deposition (PEALD) at low temperature ($120^{\circ}C$), and the Mn content in the Cu-Mn alloys were controlled form 0 to approximately 10 atomic percent with various Mn precursor feeding times. Resistivity of the Cu-Mn alloy films decreased by annealing due to out-diffusion of Mn atoms. Out-diffused Mn atoms were segregated to the surface of the film and interface between a Cu-Mn alloy and $SiO_2$, resulting in self-formed $MnO_x$ and $MnSi_xO_y$, respectively. No inter-diffusion was observed between Cu and $SiO_2$ after annealing at $500^{\circ}C$ for 12 h, indicating an excellent diffusion barrier property of the $MnSi_xO_y$. The adhesion between Cu and $SiO_2$ was enhanced by the formation of $MnSi_xO_y$. Continuous and conductive Cu-Mn seed layers were deposited with PEALD into 32 nm $SiO_2$ trench, enabling a low temperature process, and the trench was perfectly filled using electrochemical plating (ECD) under conventional conditions. Thus, it is the resultant self-forming barrier process with PEALD Cu-Mn alloy film as a seed layer for plating Cu that has further potential to meet the requirement of the smaller than 30 nm node.

  • PDF

Study on the Specular Effect in NiO spin-valve Thin Films (NiO 스핀밸브 박막의 Specular Effect에 의한 자기저항비의 향상에 대한 연구)

  • Choi, Sang-Dae;Joo, Ho-Wan;Lee, Ky-Am
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.6
    • /
    • pp.231-234
    • /
    • 2002
  • Magnetic properties are investigated for top- and bottom-type spin valves of Si/SiO$_2$/NiO(60nm)/Co(2.5nm)/Cu(1.95nm)/Co(4.5nm)/NOL(t nm; Nano Oxide layer). The MR ratios of the bottom-type spin valves with NOL are larger than those of the top-type spin valves. However, the enhancement of the former is lower than the latter. Both of spin-valves also showed almost constant Ap and smaller p. Enhanced MR ratios of spin valves with NOL result mainly from small values of with constant Ap which due to specular diffusive electron scattering at NOL(NiO)/metal interfaces.

Silicide Formation of Atomic Layer Deposition Co Using Ti and Ru Capping Layer

  • Yoon, Jae-Hong;Lee, Han-Bo-Ram;Gu, Gil-Ho;Park, Chan-Gyung;Kim, Hyung-Jun
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.202-206
    • /
    • 2012
  • $CoSi_2$ was formed through annealing of atomic layer deposition Co thin films. Co ALD was carried out using bis(N,N'-diisopropylacetamidinato) cobalt ($Co(iPr-AMD)_2$) as a precursor and $NH_3$ as a reactant; this reaction produced a highly conformal Co film with low resistivity ($50\;{\mu}{\Omega}cm$). To prevent oxygen contamination, $ex-situ$ sputtered Ti and $in-situ$ ALD Ru were used as capping layers, and the silicide formation prepared by rapid thermal annealing (RTA) was used for comparison. Ru ALD was carried out with (Dimethylcyclopendienyl)(Ethylcyclopentadienyl) Ruthenium ((DMPD)(EtCp)Ru) and $O_2$ as a precursor and reactant, respectively; the resulting material has good conformality of as much as 90% in structure of high aspect ratio. X-ray diffraction showed that $CoSi_2$ was in a poly-crystalline state and formed at over $800^{\circ}C$ of annealing temperature for both cases. To investigate the as-deposited and annealed sample with each capping layer, high resolution scanning transmission electron microscopy (STEM) was employed with electron energy loss spectroscopy (EELS). After annealing, in the case of the Ti capping layer, $CoSi_2$ about 40 nm thick was formed while the $SiO_x$ interlayer, which is the native oxide, became thinner due to oxygen scavenging property of Ti. Although Si diffusion toward the outside occurred in the Ru capping layer case, and the Ru layer was not as good as the sputtered Ti layer, in terms of the lack of scavenging oxygen, the Ru layer prepared by the ALD process, with high conformality, acted as a capping layer, resulting in the prevention of oxidation and the formation of $CoSi_2$.

The Properties of Passivation Films on Al2O3/SiNX Stack Layer in Crystalline Silicon Solar Cells (결정질 실리콘 태양전지의 Al2O3/SiNX 패시베이션 특성 분석)

  • Hyun, Ji Yeon;Song, In Seol;Kim, Jae Eun;Bae, Soohyun;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.5 no.2
    • /
    • pp.63-67
    • /
    • 2017
  • Aluminum oxide ($Al_2O_3$) film deposited by atomic layer deposition (ALD) is known to supply excellent surface passivation properties on crystalline Si surface. The quality of passivation layer is important for high-efficiency silicon solar cell. double-layer structures have many advantages over single-layer materials. $Al_2O_3/SiN_X$ passivation stacks have been widely adopted for high- efficiency silicon solar cells. The first layer, $Al_2O_3$, passivates the surface, while $SiN_X$ acts as a hydrogen source that saturates silicon dangling bonds during annealing treatment. We explored the properties on passivation film of $Al_2O_3/SiN_X$ stack layer with changing the conditions. For the post annealing temperature, it was found that $500^{\circ}C$ is the most suitable temperature to improvement surface passivation.

Hydrophobic Polydimethylsiloxane Thin Films Prepared by Chemical Vapor Deposition: Application in Water Purification (화학적 증기 증착 방법을 통해 제조한 소수성 폴리디메틸실록산 박막: 수처리로의 응용)

  • Han, Sang Wook;Kim, Kwang-Dae;Kim, Ju Hwan;Uhm, Sunghyun;Kim, Young Dok
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Polydimethylsiloxane (PDMS) can be deposited on various substrates using chemical vapor deposition process, which results in the formation of PDMS thin films with thickness below 5 nm. PDMS layers can be evenly deposited on surfaces of nanoparticles composed of various chemical compositions such as $SiO_2$, $TiO_2$, ZnO, C, Ni, and NiO, and the PDMS-coated surface becomes completely hydrophobic. These hydrophobic layers are highly resistant towards degradation under acidic and basic environments and UV-exposures. Nanoparticles coated with PDMS can be used in various environmental applications: hydrophobic silica nanoparticles can selectively interact with oil from oil/water mixture, suppressing fast diffusion of spill-oil on water and allowing more facile physical separation of spill-oil from the water. Upon heat-treatments of PDMS-coated $TiO_2$ under vacuum conditions, $TiO_2$ surface becomes completely hydrophilic, accompanying formation oxygen vacancies responsible for visible-light absorption. The post-annealed $PDMS-TiO_2$ shows enhanced photocatalytic activity with respect to the bare $TiO_2$ for decomposition of organic dyes in water under visible light illumination. We show that the simple PDMS-coating process presented here can be useful in a variety of field of environmental science and technology.

$\textrm{CO}_2$ Gas Sensor Based on $\textrm{Li}_2\textrm{ZrO}_3$ System ($\textrm{Li}_2\textrm{ZrO}_3$ 계를 이용한 $\textrm{CO}_2$ 가스 센서)

  • Park, Jin-Seong;Kim, Si-Uk;Lee, Eun-Gu;Kim, Jae-Yeol;Lee, Hyeon-Gyu
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.896-899
    • /
    • 1999
  • A carbon dioxide gas sensor was studied as a function of temperature and $CO_2$concentration in the Li$_2$ZrO$_3$ system. Lithium zirconate(Li$_2$ZrO$_3$) was synthesized by the heat-treatment of zirconia(ZrO$_2$)and Lithium carbonate(Li$_2$CO$_3$). The specimens were prepared both as bulk disk, 10mm in diameter and 1.0mm thickness, and thick films on an alumina substrate. Lithium zirconate readily responded to $CO_2$concentration from 0.1% to 100% in the range of 45$0^{\circ}C$ to $650^{\circ}C$. The sensitivity to $CO_2$ was dependent on the measuring temperature. Lithium zirconate(Li$_2$ZrO$_3$) decomposes into Li$_2$CO$_3$ and ZrO$_2$after the reaction with $CO_2$in the range of 45$0^{\circ}C$ to $650^{\circ}C$. Li$_2$CO$_3$ changes into Li$_2$O and $CO_2$ above $650^{\circ}C$. The material showed difficulty with reversibility and recovery. The optimum temperature for the highest sensitivity is around 55$0^{\circ}C$.

  • PDF

Nutritional Components Content of Oriental Melon Fruits Cultivated under Different Greenhouse Covering Films (시설하우스 외피복재 종류에 따른 참외과실의 성분 함량)

  • Choi, Young-Jun;Chun, Hee;Kim, Hark-Joo;Lee, Si-Young;Yum, Sung-Hyun;Choi, Young-Ha;Shin, Yong-Seop;Chung, Doo-Seok
    • Journal of Bio-Environment Control
    • /
    • v.16 no.1
    • /
    • pp.72-77
    • /
    • 2007
  • This study was conducted to investigate the effect of functional cover film on oriental melon fruit quality under unheated plastic greenhouse cultivation in cold period. The 6 kind of films having different characteristics were covered at plastic greenhouses and oriental melon seedlings were cultivated at 2 regions of Seongju, respectively. The air-temperatures in plastic greenhouses of J-1 and J-2, having high infrared absorption rate, were about $2{\sim}5^{\circ}C$ higher than K-3. The contents of ${\beta}-carotene$ and sugar of fruit showed significant difference between functional and normal films. The sucrose, determining a sweetness during maturation, and soluble solids content of fruits cultivated in J-1, J-2, J-3, and K-1 were higher than those of K-2 and K-3. Ascorbic acid of fruits was highest in K-2 having low light transmission rate and thermo-keeping capacity. There was no significant difference in mineral content among all of cover films. These results indicated that the use of functional greenhouse covering films could improve fruit quality such as ${\beta}-carotene$ and sugar content of oriental melon.

Lamellar Structured TaN Thin Films by UHV UBM Sputtering (초고진공 UBM 스퍼터링으로 제조된 라멜라 구조 TaN 박막의 연구)

  • Lee G. R.;Shin C. S.;Petrov I.;Greene J, E.;Lee J. J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.2
    • /
    • pp.65-68
    • /
    • 2005
  • The effect of crystal orientation and microstructure on the mechanical properties of $TaN_x$ was investigated. $TaN_x$ films were grown on $SiO_2$ substrates by ultrahigh vacuum unbalanced magnetron sputter deposition in mixed $Ar/N_2$ discharges at 20 mTorr (2.67 Pa) and at $350^{\circ}C$. Unlike the Ti-N system, in which TiN is the terminal phase, a large number of N-rich phases in the Ta-N system could lead to layers which had nano-sized lamella structure of coherent cubic and hexagonal phases, with a correct choice of nitrogen fraction in the sputtering mixture and ion irradiation energy during growth. The preferred orientations and the micro-structure of $TaN_x$ layers were controlled by varing incident ion energy $E_i\;(=30eV\~50eV)$ and nitrogen fractions $f_{N2}\;(=0.1\~0.15)$. $TaN_x$ layers were grown on (0002)-Ti underlayer as a crystallographic template in order to relieve the stress on the films. The structure of the $TaN_x$ film transformed from Bl-NaCl $\delta-TaN_x$ to lamellar structured Bl-NaCl $\delta-TaN_x$ + hexagonal $\varepsilon-TaN_x$ or Bl-NaCl $\delta-TaN_x$ + hexagonal $\gamma-TaN_x$ with increasing the ion energy at the same nitrogen fraction $f_{N2}$. The hardness of the films also increased by the structural change. At the nitrogen fraction of $0.1\~0.125$, the structure of the $TaN_x$ films was changed from $\delta-TaN_x\;+\;\varepsilon-TaN_x\;to\;\delta-TaN_x\;+\;\gamma-TaN_x$ with increasing the ion energy. However, at the nitrogen fraction of 0.15 the film structure did not change from $\delta-TaN_x\;+\;\varepsilon-TaN_x$ over the whole range of the applied ion energy. The hardness increased significantly from 21.1 GPa to 45.5 GPa with increasing the ion energy.