• 제목/요약/키워드: SiC particle size

검색결과 330건 처리시간 0.024초

Ethyl Silicate를 고순도 $\beta$-SiC미분말 합성에 관한 연구(I) 반응조건과 $\beta$-SiC의 생성율 및 특성 (A Study on Synthesis of High Purity $\beta$-SiC Fine Particle from Ethylsilicate(I) -Reaction Conditon, Yeild and Properties of $\beta$-SiC-)

  • 최용식;박금철
    • 한국세라믹학회지
    • /
    • 제25권5호
    • /
    • pp.473-478
    • /
    • 1988
  • In order to obtain the high purity $\beta$-SiC powder that possesses the excellent sinterability and is close to the spherical shape, the carbon black was mixed into the composition of Si(OC2H5)4-H2O-NH3-C2H5OH which the monodispersed spherical fine particles is formed the hydrolysis of Ethylsilicate and the mixture was carbonized under an argon atmosphere. Particle shpae, size and the yield of $\beta$-SiC powder were investigated according to the molar ratio of carbon/alkoxide and variations of reaction temperature and reaction time. The results of this study are as follow ; 1) The yield of $\beta$-SiC gained from the reaction for one hour at 150$0^{\circ}C$ almost got near 100% and the particle size of $\beta$-SiC from the reaction for 15 hrs at 150$0^{\circ}C$ was 0.2${\mu}{\textrm}{m}$ on the average and close to the spherical shape agglomerate state. 2) When the molar ratio carbon/alkoxide is over 3.1 and the reaction occurs at 145$0^{\circ}C$ for 5hrs, the carbon content has not an effect on the kind of crystal of product.

  • PDF

P형 FeSi2의 열전물성에 미치는 입자크기 및 첨가물 영향 (The Effect of Particle Size and Additives on the Thermoelectric Properties of P-type FeSi2)

  • 배철훈
    • 한국산학기술학회논문지
    • /
    • 제14권4호
    • /
    • pp.1883-1889
    • /
    • 2013
  • Fe-Si계 합금은 우주탐사용으로 응용되고 있는 Si-Ge합금보다는 낮은 성능지수를 나타내지만 원료가 풍부하여 저가이고, 제조가 간단하며, $800^{\circ}C$까지 사용가능한 중고온용 열전발전재료이다. 본 연구에서는 고주파 진공유도로를 이용해서 제조한 p형 $FeSi_2$의 열전물성에 미치는 입자크기 및 첨가물 영향에 대해 조사하였다. 조성입자크기가 작을수록 소결밀도 증가와 함께 입자와 입자간의 연결성 향상에 의해 도전율이 증가하였다. Seebeck 계수는 600~800K에서 최고값을 나타내었고, 잔존하는 ${\varepsilon}$-FeSi 금속전도상에 의해 약간 감소하였다. $Fe_2O_3$$Fe_3O_4$를 첨가한 경우, 잔존 금속전도상 및 Si 결핍양 증가에 의해 도전율은 증가하였고 Seebeck 계수는 감소하였다. 반면에 $SiO_2$를 첨가한 경우에는 도전율과 Seebeck 계수 모두 상승하였다.

$Si_3N_4/SiC$ 초미립복합체의 미세조직에 미치는 SiC 입자크기의 영향 (Effect of SiC Particle Size on Microstructure of $Si_3N_4/SiC$ Nanocomposites)

  • 이창주;김득중
    • 한국세라믹학회지
    • /
    • 제37권2호
    • /
    • pp.152-157
    • /
    • 2000
  • Si3N4/SiC nanocomposite ceramics containing 5 wt%dispersed SiC particles were prepared by gas-pressure-sintering at 200$0^{\circ}C$ under nitrogen atmosphere. SiC particles with average sizes of 0.2 and 0.5${\mu}{\textrm}{m}$ were used, and the effect of the SiC particle size on the microstructure was investigated. The addition of SiC particles effectively suppressed the growth of the Si3N4 matrix grains. The effect of grain growth inhibition was higher in the nanocomposites dispersed with fine SiC. SiC particles were dispersed uniformly inside Si3N4 matrix grains and on grain boundaries. When the fine SiC particles were added, large fraction of the SiC particles was trapped inside the grains. On the other hand, when the large SiC particles were added, most of the SiC particles were located on grain boundaries. Typically, the fraction of SiC particles located at grain boundaries was higher in the specimen prepared from $\beta$-Si3N4 than in the specimen prepared from $\alpha$-Si3N4.

  • PDF

탄화규소 세라믹의 충격손상 및 강도저하에 미치는 입자의 재질 및 크기의 영향 (Influences of Particle Property and Its Size Impact Damage and Strength Degradation in Silicon Carbide Ceramics)

  • 신형섭;전천일랑;서창민
    • 대한기계학회논문집
    • /
    • 제16권10호
    • /
    • pp.1869-1876
    • /
    • 1992
  • 본 연구에서는 고온에서 높은 강도특성을 유지하면서 동시에 내마모성이 뛰어 나 가스터어빈의 부재로서의 사용이 기대되는 탄화규소(SiC) 세라믹에 대하여, 고체입 자의 충격에 의해 생기는 손상에 미치는 입자의 재질 및 크기의 영향을 조사하였다. 또 각 형태의 손상발생 임계치와 강도저하에 미치는 입자크기의 영향에 관해서도 검토 하였다.

솔-젤 공정으로 제조된 SiO2-C 복합 전구체를 사용하여 열탄소환원법에 의한 β-SiC 분말 합성에 금속 Si 첨가가 미치는 영향 (Effects of Metallic Silicon on the Synthsis of β-SiC Powders by a Carbothermal Reduction Using SiO2-C Hybrid Precursor Fabricated by a Sol-gel Process)

  • 조영철;염미래;윤성일;조경선;박상환
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.402-409
    • /
    • 2013
  • The objective of this study was to develop a synthesis process for ${\beta}$-SiC powders to reduce the synthesis temperature and to control the particle size and to prevent particle agglomeration of the synthesized ${\beta}$-SiC powders. A phenol resin and TEOS were used as the starting materials for the carbon and Si sources, respectively. $SiO_2$-C hybrid precursors with various C/Si mole ratios were fabricated using a conventional sol-gel process. ${\beta}$-SiC powders were synthesized by a carbothermal reduction process using $SiO_2$-C hybrid precursors with various C/Si mole ratios (1.6 ~ 2.5) fabricated using a sol-gel process. In this study, the effects of excess carbon and the addition of Si powders to the $SiO_2$-C hybrid precursor on the synthesis temperature and particle size of ${\beta}$-SiC were examined. It was found that the addition of metallic Si powders to the $SiO_2$/C hybrid precursor with excess carbon reduced the synthesis temperature of the ${\beta}$-SiC powders to as low as $1300^{\circ}C$. The synthesis temperature for ${\beta}$-SiC appeared to be reduced with an increase of the C/Si mole ratio in the $SiO_2$-C hybrid precursor by a direct carburization reaction between Si and excess carbon.

다공성 SiC-Si 복합체의 전기비저항에 미치는 Si 첨가량의 영향 (Effect of Si Addition on Resistivity of Porous SiC-Si Composite for Heating Element Application)

  • 전신희;이원주;공영민
    • 한국재료학회지
    • /
    • 제25권5호
    • /
    • pp.258-263
    • /
    • 2015
  • To fabricate porous SiC-Si composites for heating element applications, both SiC powders and Si powders were mixed and sintered together. The properties of the sintered SiC-Si body were investigated as a function of SiC particle size and/or Si particle contents from 10 wt% to 40 wt%, respectively. Porous SiC-Si composites were fabricated by Si bonded reaction at a sintering temperature of $1650^{\circ}C$ for 80 min. The microstructure and phase analysis of SiC-Si composites that depend on Si particle contents were characterized using scanning electron microscope and X-ray diffraction. The electrical resistivity of SiC-Si composites was also evaluated using a 4-point probe resistivity method. The electrical resistivity of the sintered SiC-Si body sharply decreased as the amount of Si addition increased. We found that the electrical resistivity of porous SiC-Si composites is closely related to the amount of Si added and at least 20 wt% Si are needed in order to apply the SiCSi composites to the heating element.

알콕사이드로부터 Sialon-SiC계 복합분말의 합성과 분말특성(I) (Synthesis ofSialon-SiC Composite Powder from Alkoxides and the Powder Properties(I))

  • 전명철;이홍림
    • 한국세라믹학회지
    • /
    • 제27권2호
    • /
    • pp.265-273
    • /
    • 1990
  • Fine Si-Al-OH-C coprecipitate powders were prepared from Si(OC2H5)4, Al(i-OC3H7)3, and carbon black by a hydrolysis method before fabrication of Sialon-SiC composite powder by carbothermal reduction at 1350$^{\circ}C$ for 10h under N2/H2 mixed atmosphere. The characterization of the synthesized Sialon-SiC composite powders was performed using XRD, BET, SEM, TEM and particle size analysis methods. The average particle size and specific surface area of the synthesized Sialon-SiC composite powder were 0.13$\mu\textrm{m}$ and 20.1㎡/g, respectively when Z=1 and N2 : H2=50 : 50.

  • PDF

도핑된 알루미나 여과막의 미세구조 변화 (Microstructural Change of Doped-Alumina Membrane)

  • 이진하;최성철;한경섭
    • 한국세라믹학회지
    • /
    • 제36권10호
    • /
    • pp.1040-1047
    • /
    • 1999
  • After alumina sol was prepared by Yoldas process supported membranes were fabricated by adding ce and Re solution and SiO2 sol into alumina sol. The particle size of alumina sol was 11 nm and it was monodispersed transparent and stable for long time. The pore size of un-doped membrane started to increase to about 7,5nm at 1000$^{\circ}C$ and it was grown to twice (about 15nm) at 1100$^{\circ}C$ However the pore size of doped alumina was uniform to 1100$^{\circ}C$. The effect of retardation of grain growth was superior in SiO2 addition to that of Ce and Ru Because SiO2 doped samples transformed to needed-like phase and densified at 1200$^{\circ}C$ their application in membranes was limited. Ce and Ru doped sample showed vermicular structure identical to the un-doped ones at 1200$^{\circ}C$ But the particle size was smaller than that of un-doped ones.

  • PDF

초고압 소결된 다이아몬드/실리콘 카바이드 복합재료의 계면특성 및 기계적 특성 (Interfacial Characteristics and Mechanical Properties of HPHT Sintered Diamond/SiC Composites)

  • 박희섭;류민호;홍순형
    • 한국분말재료학회지
    • /
    • 제16권6호
    • /
    • pp.416-423
    • /
    • 2009
  • Diamond/SiC composites are appropriate candidate materials for heat conduction as well as high temperature abrasive materials because they do not form liquid phase at high temperature. Diamond/SiC composite consists of diamond particles embedded in a SiC binding matrix. SiC is a hard material with strong covalent bonds having similar structure and thermal expansion with diamond. Interfacial reaction plays an important role in diamond/SiC composites. Diamond/SiC composites were fabricated by high temperature and high pressure (HPHT) sintering with different diamond content, single diamond particle size and bi-modal diamond particle size, and also the effects of composition of diamond and silicon on microstructure, mechanical properties and thermal properties of diamond/SiC composite were investigated. The critical factors influencing the dynamics of reaction between diamond and silicon, such as graphitization process and phase composition, were characterized. Key factor to enhance mechanical and thermal properties of diamond/SiC composites is to keep strong interfacial bonding at diamond/SiC composites and homogeneous dispersion of diamond particles in SiC matrix.

Effects of SiC Particle Size and Inorganic Binder on Heat Insulation of Fumed Silica-based Heat Insulation Plates

  • Jo, Hye Youn;Oh, Su Jung;Kim, Mi Na;Lim, Hyung Mi;Lee, Seung-Ho
    • 한국세라믹학회지
    • /
    • 제53권4호
    • /
    • pp.386-392
    • /
    • 2016
  • Heat insulation plates of fumed silica were prepared by mixing fumed silica, SiC powder and chopped glass fiber by a high speed mixer followed by pressing of the mixture powder in a stainless steel mold of $100{\times}100mm$. Composition of the plates, particle size of SiC, and type of inorganic binder were varied for observation of their contribution to heat insulation of the plate. The plate was installed on the upper portion of an electric furnace the inside temperature of which was maintained at $400^{\circ}C$ and $600^{\circ}C$, for investigation of heat transfer through the plate from inside of the electric furnace to outside atmosphere. Surface temperatures were measured in real time using a thermographic camera. The particle size of SiC was varied in the range of $1.3{\sim}17.5{\mu}m$ and the insulation was found to be most excellent when SiC of $2.2{\mu}m$ was incorporated. When the size of SiC was smaller or larger than $2.2{\mu}m$, the heat insulation effect was decreased. Inorganic binders of alkali silicate and phosphate were tested and the phosphate was found to maintain the heat insulation property while increasing mechanical properties.