• Title/Summary/Keyword: SiC particle

Search Result 519, Processing Time 0.024 seconds

The Sintering Mechanism and Crystallization Characteristics of Alumina-filled Cordierite-type Glass-ceramics (알루미나를 첨가한 코디어라이트계 결정화 유리의 소결거동 및 결정화 특성)

  • 박정현;노재호;성재석;구기덕
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.7
    • /
    • pp.706-714
    • /
    • 1998
  • The MgO-{{{{ { {Al }_{2 }O }_{3 } }}-{{{{ { {SiO }_{2 } }_{ } }}system containing alumina powder was fabricated sintered at various temperature and analyzed in order to study the sintering mechanism and crystallization characteristics. The specimen composed of glass powder with average particle size of 8.27 $\mu\textrm{m}$ and 0-40 vol% alumina powder were sint-ered for 3 hrs at the temperature between 850$^{\circ}C$ and 1350$^{\circ}C$ The sintering mechanism consists of the redis-tribution of particles occuring at 750$^{\circ}C$ and the viscous flow at 850∼950$^{\circ}C$. The degree of crystallization and sintering temperatue were dependent upon the ratio of glass/alumina. The second phase from the reaction between glass and alumina was not observed which was confirmed by XRD and properties analysis. The density dielectric constant and specific resistivity of specimen were 2.30∼3.26g/cm2 5.8∼7.38 at 1 GHz density dielectric constant and specific resistivity of specimen were 2.30∼3.26g/cm3 5.8∼7.38 at 1GHz and 1.23∼4.70${\times}$107 $\Omega$$.$m respectively.

  • PDF

An Evaluation on the Performance of Recyclable Cement by Micron Separating Method (미세분급 방법 개선에 의한 재생시멘트의 성능 평가)

  • Hong, Young-Tae;Kim, Sae-Young;Ko, Eun-Hye;Oh, Sang-Gyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.39-42
    • /
    • 2006
  • In this study, there is purpose that is on a concrete defect happen from aggregate minute's particle mixing in process that make waste concrete as recyclable cement puts to practical use constructing basic data for design of mix proportion used recyclable cement and solves strength fall problem using micron separator, and does general recyclable cement high quality. As a result of X-ray diffraction(XRD) of rater HR-C than NR-C is aware that it come out the micron-separating to decrease the $SiO_2$-peak below 50%. And a construction field which apply for strength's $24{\sim}28MPa$ HR-C in order to realize NR-C of 44% and 51%. Recycle concrete capacity through improved recycle cement of manufacturing technique by micron-separating's new distribution more better improvement. Therefore, in this study, it need to more various study a recycle cement of high quality for reasonable and utility recycling than disposal concrete.

  • PDF

Effect of Composition of γ-Al2O3/SiO2 Mixed Support on Fischer-Tropsch Synthesis with Iron Catalyst (철 기반 촉매의 Fischer-Tropsch 합성에서 γ-Al2O3/SiO2 혼합 지지체 조성의 영향)

  • Min, Seon Ki;No, Seong-Rae;You, Seong-sik
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.436-442
    • /
    • 2017
  • Fischer-Tropsch synthesis is the technology of converting a syngas (CO+$H_2$) derived from such as coal, natural gas and biomass into a hydrocarbon using a catalyst. The catalyst used in the Fischer-Tropsch synthesis consists of active metal, promoter and support. The types of these components and composition affect the reaction activity and product selectivity. In this study, we manufactured an iron catalyst using ${\gamma}-Al_2O_3/SiO_2$ mixed support (100/0 wt%, 75/25 wt%, 50/50 wt%, 25/75 wt%, 0/100 wt%) by an impregnation method to investigate how the composition of ${\gamma}-Al_2O_3/SiO_2$ mixed support effects on the reaction activity and product selectivity. The physical properties of catalyst were analyzed by $N_2$ physical adsorption and X-Ray diffraction method. The Fischer-Tropsch synthesis was conducted at $300^{\circ}C$, 20bar in a fixed bed reactor for 60h. According to the results of the $N_2$ physical adsorption analysis, the BET surface area decreases as the composition of ${\gamma}-Al_2O_3$ decreases, and the pore volume and pore average diameter increase as the composition of ${\gamma}-Al_2O_3$ decreases except for the composition of ${\gamma}-Al_2O_3/SiO_2$ of 50/50 wt%. By the results of the X-Ray diffraction analysis, the particle size of ${\alpha}-Fe_2O_3$ decreases as the composition of ${\gamma}-Al_2O_3$ decreases. As a result of the Fischer-Tropsch synthesis, the CO conversion decreases as the composition of ${\gamma}-Al_2O_3$ decreases, and the selectivity of C1-C4 decreases until the composition of ${\gamma}-Al_2O_3$ was 25 wt%. In contrast, the selectivity of C5+ increases until the composition of ${\gamma}-Al_2O_3$ is 25 wt%.

Effect of V-doping on Colour and Crystallization of Malayaite Pigments (V의 고용이 Malayaite의 결정 및 발색에 미치는 영향)

  • Joo, In-Don;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.4
    • /
    • pp.302-307
    • /
    • 2010
  • This study aims to synthesize emerald-green malayaite pigments using $CaCO_3$, $SiO_2$, $SnO_2$ and $V_2O_5$. For this purpose, the optimum composition is $CaV_{0.25}Sn_{0.687}SiO_5$ and heating condition is at $1250^{\circ}C$ for 6 h of soaking time. The samples were characterized by X-ray diffraction (XRD), the Fourier Transform Infrared Spectrometers(FT-IR), the Raman Spectrometer, Scanning Electron Microscope(SEM) and the UV/Vis spectroscopy. The substituted V ion for Sn was observed to be quadrivalence. The analytical results of the synthesized pigment showed the tetragonal crystal, a typical form of Malayaite, and the particle size to be approximately $5{\sim}10\;{\mu}m$. The color in lime glaze added 12 wt% pigment was emerald green, and CIE Lab parameters are $L^*=67.73$, $a^*=-12.39$ and $b^*=9.28$.

Study on the Improvement of the Fastness of Dyeing for Environmentally Synthetic Suede Using Silica Particles (실리카 입자를 활용한 친환경 인조스웨이드의 견뢰도 향상에 관한 연구)

  • Lee, Hye Mi;Kim, Ah Rong;Kim, Dae Geun
    • Textile Coloration and Finishing
    • /
    • v.30 no.4
    • /
    • pp.275-287
    • /
    • 2018
  • In recent years, research on the development of eco-friendly synthetic suede based on water-dispersed polyurethane resin and non-fluorine water repellent has been conducted. Synthetic suede has a problem that the fastness to dyeing is greatly lowered after the water-repellent processing at a high temperature of $160^{\circ}C$ because the polyester is dyed with a disperse dye. Therefore, in this study, silica was added to water-dispersed polyurethane resin to improve dye fastness. To distribute the $PUD-SiO_2$ mixture evenly in the water-dispersed polyurethane resin, sufficient stirring was done for a period of time. When the $PUD-SiO_2$ mixture(PUD 1-5%) is applied to the substrate, it is confirmed through SEM that the mixture is uniformly applied without particle condensation. The results showed that silica with a diameter of 4~12nm and BET of $200{\sim}380g/m^2$ had the ability to improve dispersibility and fastness.

Behavior of Graphite and Formation of Intermetallic Compound Layer in Hot Dip Aluminizing of Cast Iron (주철 - 알루미늄 합금의 Hot Dip Aluminizing시 흑연 및 금속간화합물 층의 형성 거동)

  • Han, Kwang-Sic;Kang, Yong-Joo;Kang, Mun-Seok;Kang, Sung-Min;Kim, Jin-Su;Son, Kwang-Suk;Kim, Dong-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.31 no.2
    • /
    • pp.66-70
    • /
    • 2011
  • Hot dip aluminizing (HDA) is widely used in industry for improving corrosion resistance of material. The formation of intermetallic compound layers during the contact between dissimilar materials at high temperature is common phenomenon. Generally, intermetallic compound layers of $Fe_2Al_5$ and $FeAl_3$ are formed at the Al alloy and Fe substrate interface. In case of cast iron, high contact angle of graphite existed in the matrix inhibits the formation of intermetallic compound layer, which carry with it the disadvantage of a reduced reaction area and mechanical properties. In present work, the process for the removal of graphite existed on the surface of specimen has been investigated. And also HDA was proceeded at $800^{\circ}C$ for 3 minutes in aluminum alloy melt. The efficiency of graphite removal was increased with the reduction of particle size in sanding process. Graphite appears to be present both in the region of melting followed by re-solidification and in the intermetallic compound layer, which could be attributed to the fact that the surface of cast iron is melted down by the formation of low melting point phase with the diffusion of Al and Si to the cast iron. Intermetallic compound layer consisted of $Fe(Al,Si)_3$ and $Fe_2Al_5Si$, the layer formed at cast iron side contained lower amount of Si.

Effects of Yellow Clay Contents on Removal Efficiency of Harmful Dinoflagellate Cochlodinium polykrikoides (적조생물 Cochlodinium polykrikodes 구제효율에 미치는 황토의 광물학적 특징)

  • PARK, Young-Tae;PARK, Ho-Sup;PARK, Tae-Gyu;AHN, Gyoung-Ho;SON, Moon-Ho;KIM, Pyoung-Joong;PARK, Mang-Eun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.6
    • /
    • pp.1662-1672
    • /
    • 2016
  • To address physicochemical factors of yellow clay for removing Cochlodinium polykrikoides blooms, the correlation of removal efficiency with mineralogical characteristics of yellow clay collected from various areas was surveyed. Yellow clay from different localities showed the wide range of chemical compositions $SiO_2$ : 43~71%, $Al_2O_3$ : 13~26%, $Fe_2O_3$ : 5~14%, MgO : 0.4~1.8%, $K_2O$ : 0.6~3.3%, L.O.I.(Loss of Ignition) : 4.5~15%. The mineral compositions of yellow clay were mainly consisted of quartz and feldspar including small amounts of kaolinite, chlorite, and Fe-oxides. The result of size analysis showed that $6{\Phi}(31{\sim}16{\mu}m)$ and $7{\Phi}(16{\sim}8{\mu}m)$ were dominated sizes. The zeta-potential were in the range of -4.1~-20.7mV(average -13.7). As increasing removal efficiency of C. polykrikoides, contents of $Al_2O_3$, $Fe_2O_3$ and L.O.I. in yellow clay increased, whereas $SiO_2$ content decreased. Furthermore, the amounts of silt mineral and small particle were high when the removal efficiency was high. According to factor analysis using principle component analysis, two components of factor 1 and factor 2 showed 79% of the total variance, which is related to cohesion and adsorption. Inducing cell lysis of C. polykrikoides by cohension and adsorption between C. polykrikoides and yellow clay.

The Effect of High Power Sputtering Conditions on Surface Roughness of Carbon Mold for Glass Forming (유리성형용 카본금형의 표면조도에 미치는 고출력 스퍼터링 조건의 영향)

  • Sung-Hoo Ju;Jae-Woong Yang
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.46-57
    • /
    • 2024
  • In this study, the various process conditions for high-power DC Magnetron Sputtering (DCMS) on the surface roughness of carbon thin films were investigated. The optimal conditions for Si/C coating were 40min for deposition time, which does not deviate from normal plasma, to obtain the maximum deposition rate, and the conditions for the best surface roughness were -16volt bias voltage and 400watt DC power with 1.3x10-3torr chamber pressure. Under these optimal conditions, an excellent carbon thin film with a surface roughness of 1.62nm and a thickness of 724nm was obtained. As a result of XPS analysis, it was confirmed that the GLC structure (sp2 bonding) was more dominant than the DLC structure (sp3 bonding) in the thin film structure of the carbon composite layer formed by DC sputtering. Except in infrequent cases of relatively plasma instability, the lower bias voltage and applied power induces smaller surface roughness value due to the cooling effect and particle densification. For the optimal conditions for Graphite/C composite layer coating, a roughness of 36.3 nm and a thickness of 711 nm was obtained under the same conditions of the optimal process conditions for Si/C coating. This layer showed a immensely low roughness value compared to the roughness of bare graphite of 242 nm which verifies that carbon coating using DC sputtering is highly effective in modifying the surface of graphite molds for glass forming.

New Application of Clay Filler for Carbon/Carbon Composites and Improvement of Filler Effect by Clay Size Reduction

  • Jeong, Eui-Gyung;Kim, Jin-Hoon;Lee, Young-Seak
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.293-297
    • /
    • 2010
  • To investigate new potential application of a clay material for C/C composites, illite added C/C composites were prepared with various illite contents. The improvement of filler effect by illite size reduction was also investigated using wet ballmilling by evaluating illite/phenolic resin infiltration using bulk density and porosity measurements, chemical structural changes of the composites using XRD, and thermal oxidation stability in air of the composites using TGA. The size reduction of illite resulted in narrower particle size distribution and improved illite infiltration into carbon preform. And the resultant C/C composites prepared with illite had even more improved thermal oxidation stability in air, showing more increased IDTs up to $100^{\circ}C$, compared to those of the C/C composites with pristine illite, due to the SiC formation through carbothermal reduction between illite and carbon materials. The illite induced delay in oxidation of the illite-C/C composites was also observed and the delayed oxidation behavior was attributed to the layered structure of illite, which improved illite/phenol resin infiltration. Therefore, the potential use of illite as filler to improve oxidation stability of C/C composite can be promising. And the size reduction of illite can improve its effect on the desired properties of illite-C/C composites even more.

Effect of Green Microstructure on Sintered Microstructure and Mechanical Properties of Reaction-Bonded Silicon Carbide (성형미세구조가 반응소결 탄화규소체의 소결미세구조 및 기계적 특성에 미치는 영향)

  • 박현철;김재원;백운규;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.97-105
    • /
    • 1999
  • In the binary system of SiC and carbon, porosity and pore size distribution of green body was controlled by varying pH, by the addition of polyelectrolyte dispersants, and by using different particle size of starting powders. The preforms having different green microstructure were fabricated by slip casting from suspensions having different dispersion condition. The reaction bonding process was carried out for these preforms. The condition of reaction bonding was 1600$^{\circ}C$ and 20 min. under vacuum atmosphere. The analyses of optical and SEM were studied to investigate the effect of green microstructure on that of reaction bonded silicon carbide and subsequently the mechanical properties of sintered body was investigated. Different green microstructures were obtained from suspensions having different dispersion condition. It was found that the pore size could be remarkably reduced for a fine SiC(0.5$\mu\textrm{m}$). The bimodal microstructure was not found in the present study, which is frequently observed in the typical reaction bonded silicon carbide. It is considered that the ratio between SiC and C was responsible for the formation of bimodal microstructure. For the preform fabricated from the well dispersed suspension, the 3-point bending strength of reaction-bonded silicon carbide was 310${\pm}$40 MPa compared to the specimen fabricated from relatively agglomerated particles having lower value 260${\pm}$MPa.

  • PDF