• Title/Summary/Keyword: SiC inverter

Search Result 27, Processing Time 0.025 seconds

Z-Source Inverter with SiC Power Semiconductor Devices for Fuel Cell Vehicle Applications

  • Aghdam, M. Ghasem Hosseini
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.606-611
    • /
    • 2011
  • Power electronics is a key technology for electric, hybrid, plug-in hybrid, and fuel cell vehicles. Typical power electronics converters used in electric drive vehicles include dc/dc converters, inverters, and battery chargers. New semiconductor materials such as silicon carbide (SiC) and novel topologies such as the Z-source inverter (ZSI) have a great deal of potential to improve the overall performance of these vehicles. In this paper, a Z-source inverter for fuel cell vehicle application is examined under three different scenarios. 1. a ZSI with Si IGBT modules, 2. a ZSI with hybrid modules, Si IGBTs/SiC Schottky diodes, and 3. a ZSI with SiC MOSFETs/SiC Schottky diodes. Then, a comparison of the three scenarios is conducted. Conduction loss, switching loss, reverse recovery loss, and efficiency are considered for comparison. A conclusion is drawn that the SiC devices can improve the inverter and inverter-motor efficiency, and reduce the system size and cost due to the low loss properties of SiC devices. A comparison between a ZSI and traditional PWM inverters with SiC devices is also presented in this paper. Based on this comparison, the Z-source inverter produces the highest efficiency.

SiC Motor Drive for Elevator System (엘리베이터 시스템을 위한 SiC 권상기 드라이브)

  • Gwon, Jin-Su;Moon, Seok-Hwan;Kim, Ju-Chan;Lee, Joon-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.147-152
    • /
    • 2019
  • With the recent emphasis on the importance of energy conservation, studies on high-efficiency elevator systems are being continuously conducted. Therefore, pulse width modulation converters are commonly used in traction drives on elevator systems. Wide bandgap devices have been increasingly commercialized, and their application to power conversion systems, such as renewable and energy storage system, has been gradually increasing. In this study, a SiC inverter for an elevator traction drive is investigated. In particular, an inverter is designed to minimize stray and parasitic inductance. Input and output filters are designed by considering switching frequency. The designed SiC inverter reduces volume by approximately 32% compared with that of a Si inverter, and power converter efficiency is over 98.8%.

Design of Gate Driver Power Supply for 3-Phase Inverter Using SiC MOSFET (SiC MOSFET를 사용한 3상 인버터용 게이트 드라이버 전원 설계)

  • Lee, Sangyong;Chung, Se-Kyo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.429-436
    • /
    • 2021
  • The design of a gate driver power supply for a three-phase inverter using a silicon carbide (SiC) MOSFET. The requirements for the power supply circuit of the gate driver for the SiC MOSFET are investigated, and a flyback converter using multiple transformers is used to make the four isolated power supplies. The proposed method has the advantage of easily constructing the power supply circuit in a limited space as compared with a multi-output flyback converter using a single core. The power supply circuit for the three-phase SiC MOSFET inverter for driving an AC motor is designed and implemented. The operation and validity of the implemented circuit are verified through simulations and experiments.

Single-phase Resonant Inverter using SiC Power Modules for a Compact High-Voltage Capacitive Coupled Plasma Power Supply

  • Tu, Vo Nguyen Qui;Choi, Hyunchul;Kim, Youngwoo;Lee, Changhee;Yoo, Hyoyol
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.85-86
    • /
    • 2014
  • The paper presents a power supply of atmospheric-pressure plasma reactor based on SiC (Silicon Carbide) MOSFET resonant inverter. Thanks to the capacitive characteristic of capacitive coupling plasma reactor type, the LC series resonant inverter had been applied to take advantages of this topology with the implementation of SiC MOSFET power modules as switching power devices. Designation of gate driver for SiC MOSFET had been introduced by this paper. The 5kVp, 5kW power supply had also been verified by experimental results.

  • PDF

Unified design approach for single- and 3-phase input air conditioning systems using SiC devices

  • Kim, Simon;Balasubramaniasarma, Swaminathan;Ma, Kwokwai;Chung, Daewoong
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.205-208
    • /
    • 2020
  • This paper examines the approach, enabled by using SiC power devices, to unify the inverter design for central air conditioning (CAC) system for both single- and 3-phase input, and reduce the PFC inductor size to be PCB-mountable. By using SiC-instead of Si-diode in PFC stage, it is possible to increase the switching frequency from 16kHz to 60kHz to reduce the required PFC inductance from 0.93mH to 0.25mH, thus enable PCB-mounting of inductor. With the next step of using 1200V SiC MOSFET instead of Si-IGBT, the DC link voltage can be boosted from 311Vdc to 550Vdc in PFC stage, allowing the inverter and compressor used in 3-phase input CAC be used for single-phase input as well. Furthermore, using SiC MOSFET in inverter stage can further reduce total loss system total loss to 200.8 W. Simulation and experimental results are presented in the paper.

  • PDF

Partial O-state Clamping PWM Method for Three-Level NPC Inverter with a SiC Clamp Diode

  • Ku, Nam-Joon;Kim, Rae-Young;Hyun, Dong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1066-1074
    • /
    • 2015
  • This paper presents the reverse recovery characteristic according to the change of switching states when Si diode and SiC diode are used as clamp diode and proposes a method to minimize the switching loss containing the reverse recovery loss in the neutral-point-clamped inverter at low modulation index. The previous papers introduce many multiple circuits replacing Si diode with SiC diode to reduce the switching loss. In the neutral-point-clamped inverter, the switching loss can be also reduced by replacing device in the clamp diode. However, the switching loss in IGBT is large and the reduced switching loss cannot be still neglected. It is expected that the reverse recovery effect can be infrequent and the switching loss can be considerably reduced by the proposed method. Therefore, it is also possible to operate the inverter at the higher frequency with the better system efficiency and reduce the volume, weight and cost of filters and heatsink. The effectiveness of the proposed method is verified by numerical analysis and experiment results.

Analytical and Experimental Validation of Parasitic Components Influence in SiC MOSFET Three-Phase Grid-connected Inverter

  • Liu, Yitao;Song, Zhendong;Yin, Shan;Peng, Jianchun;Jiang, Hui
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.591-601
    • /
    • 2019
  • With the development of renewable energy, grid-connected inverter technology has become an important research area. When compared with traditional silicon IGBT power devices, the silicon carbide (SiC) MOSFET shows obvious advantages in terms of its high-power density, low power loss and high-efficiency power supply system. It is suggested that this technology is highly suitable for three-phase AC motors, renewable energy vehicles, aerospace and military power supplies, etc. This paper focuses on the SiC MOSFET behaviors that concern the parasitic component influence throughout the whole working process, which is based on a three-phase grid-connected inverter. A high-speed model of power switch devices is built and theoretically analyzed. Then the power loss is determined through experimental validation.

Research on operation stability of 7kW Inverter for short distance vehicle using SiC Hybrid module (SiC 하이브리드 모듈을 적용한 근거리용 7kW Inverter 동작 안정성에 대한 연구)

  • Jeon, Joon-Hyeok;Kyoung, Sin-Su;Kim, Hee-Jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.5
    • /
    • pp.499-506
    • /
    • 2019
  • This paper is concerned with the operating stability of 7kW inverter using SIC hybrid module and verifies the validity of the simulation results by comparing the result of the loss equation and the simulation result, Simulation results using Si module and SiC hybrid module are compared to compare switch loss and diode loss. Through the loss equation calculation, the conduction loss of SiC Hybrid module is 168W, switching loss is 9.3W, diode loss is 10.5nW, When compared with the simulation results, similar values were shown. As a result of comparing the simulation results of the Si module and the SiC Hybrid module, The total device loss of the Si module was 246.2W, and the total device loss of the SiC Hybrid module was 189.9W. The loss difference was 56.3W, which was about 0.8W. thereby verifying the reverse recovery characteristics of the SiC SBD. In addition, temperature saturation test was conducted to confirm the stability of SiC Hybrid module and Si module under high temperature saturation, In the case of the Si module, the output power was stopped at 4kW, and the SiC Hybrid module was confirmed to operate at 7kW. Based on this, an efficiency graph and a temperature graph are presented, and the Si module is graphed up to 4kW and the SiC Hybrid module is graphed up to 7kW.

Open Switch Fault Tolerance Control of Active NPC Inverters With HF/LF Modulation (HF/LF 변조를 적용한 Active NPC 인버터의 개방 고장 허용 제어)

  • Jung, Won Seok;Kim, Ye-Ji;Kim, Seok-Min;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.170-177
    • /
    • 2020
  • This paper presents an open-fault tolerance control method for active neutral point clamped (ANPC) inverter with high frequency/low frequency (HF/LF) modulation. By applying the ANPC inverter with SiC MOSFETs and Si IGBTs, the system efficiency and performance can be improved compared to a Si-based inverter. HF/LF modulation is used for a megawatt-scale inverter to minimize the commutation loop. The open-switch failure in megawatt-scale inverter causes severe damage to load and huge expenses when the inverter has been shut-down. The proposed tolerance control of open-switch failure provides continuous operation and improved reliability to the ANPC inverter. The effectiveness of the proposed fault tolerance control is verified by simulation results.