• Title/Summary/Keyword: SiC containing ceramics

Search Result 42, Processing Time 0.021 seconds

The Microstructure Control of SiC Ceramics Containing Porcelain Scherben (자기파를 함유한 SiCwlf 세라믹스의 미세구조 제어)

  • 이성희
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.5
    • /
    • pp.626-634
    • /
    • 1995
  • The SiC-porcelain powder mixtures containing 51.9wt% SiC are produced as by-products from the surface abrasion process of porcelain cores. This raw powders were used as starting materials for the synthesis of SiC containing ceramics. The specimen, which was fired at 135$0^{\circ}C$ from raw powders, had SiC, $Al_{2}O_{3}$, , cristobalite, mullite as crystalline phases, and the fractured microstructure showed dispersed SiC crystalline particles almost wetted with glassy matrix and spherical pores. Although the oxidation of SiC containing powder compacts wetted with glassy matrix and spherical pores. Although the oxidation of SiC containing powder compacts started at the range of 600~80$0^{\circ}C$ form the analysis of weight gain, the presence of $SiO_{2}$ crystallien phase and cristobalite was confirmed at 100$0^{\circ}C$ by XRD analysis. Mullitization of specimens was accelerated by preheating before the final firing. The specimen sintered at 135$0^{\circ}C$ after 100$0^{\circ}C$ preheating consisted of SiC, cristobalite, mullite as crystalline phases, and revealed 2.24g/$cm^{3}$ bulk density, 11.73% water adsorption, porous microstructure with small amount of glassy phase. SiC contents of specimens, which was 51.9 wt% in the raw powders, reduced to 37~22 wt% after firing at 135$0^{\circ}C$ depending on the preheating condition.

  • PDF

A Study on the Transparent Glass-Ceramics On Al2O3-SiO2 System (투명 결정화 유리에 관한 연구 - $Al_2O_3-SiO_2$계에 관하여)

  • 박용완;김용욱
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.3
    • /
    • pp.223-231
    • /
    • 1992
  • CaO and ZnO were added to Al2O3-SiO2 binary system respectively as flux, then ZrO2 and TiO2 were applied as nucleating agent to these CaO-Al2O3-SiO2 and ZnO-Al2O3-SiO2 ternary system glass. The transparency could not be kept in CaO-Al2O3-SiO2 system glass, whereas the transparent glass-ceramics were prepared in ZnO-Al2O3-SiO2 system glass containing ZrO2 as the nucleating agent. At this time the optimum heating temperatures for the nucleation and the crystal growth were 78$0^{\circ}C$ and 97$0^{\circ}C$. The sizes of the precipitated crystals in the transparent glass-ceramics were below 0.1 ${\mu}{\textrm}{m}$, and their light transmissibilities were more than 80%.

  • PDF

Effects of the SiC Particle Size and Content on the Sintering and Mechanical Behaviors of $Al_2O_3$/SiC Particulate Composites

  • Ryu, Jung-Ho;Lee, Jae-Hyung
    • The Korean Journal of Ceramics
    • /
    • v.3 no.3
    • /
    • pp.199-207
    • /
    • 1997
  • $Al_2O_3$/SiC particulate composites were fabircated by pressureless sintering. The dispersed phase was SiC of which the content was varied from 1.0 to 10 vol%. Three SiC powders having different median diameters from 0.28 $\mu\textrm{m}$ to 1.9 $\mu\textrm{m}$ were used. The microstructure became finer and more uniform as the SiC content increased except the 10 vol% specimens, which were sintered at a higher temperature. Under the same sintering condition, densification as well as grain growth was retarded more severly when the SiC content was higher or the SiC particle size was smaller. The highest flexural strength obtained at 5.0 vol% SiC regardless of the SiC particle size seemed to be owing to the finer and more uniform microstructures of the specimens. Annealing of the specimens at $1300^{\circ}C$ improved the strength in general and this annealing effect was good for the specimens containing as low as 1.0 vol% of SiC. Fracture toughness did not change appreciably with the SiC content but, for the composites containing 10 vol% SiC, a significantly higher toughness was obtained with the specimen containing 1.9$\mu\textrm{m}$ SiC particles.

  • PDF

Densification and Mechanical Properties of Silicon Nitride Containing Lu2O3-SiO2 Additives (Lu2O3-SiO2계 소결조제를 포함하는 Silicon Nitride의 소결 특성 및 기계적 거동)

  • Lee, Sea-Hoon;Jo, Chun-Rae;Park, Young-Jo;Ko, Jae-Woong;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.384-389
    • /
    • 2011
  • Gas pressure sintering (GPS) of reaction bonded silicon nitride (RBSN) was performed using $Lu_2O_3-SiO_2$ additive and the properties were compared with those of specimens prepared using high purity $Si_3N_4$ powder. The relative density of RBSN and compacted $Si_3N_4$ powder were 68.9 and 47.1%, and total linear shrinkage after sintering at $1900^{\circ}C$ were 14.8 and 42.9%, respectively. High nitrogen partial pressure (5MPa) was required during sintering at $1900^{\circ}C$ in order to prevent the decomposition of the nitride and to promote the formation of SiC. The relative density and 4-point bending strength of RBSN and $Si_3N_4$ powder compact were 97.7%, 954MPa and 98.2%, 792MPa, respectively, after sintering at $1900^{\circ}C$. The sintered RBSN also showed high fracture toughness of 9.2MPam$^{1/2}$.

Wear behavior of $Si_3N_4$-SiC nanocomposite in water

  • Kim, S. H.;Lee, S. W.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.187-187
    • /
    • 1997
  • Silicon nitride is the most excellent materials among structural ceramics. It has been reported that fracture toughness was improved with adding second phase particles, whisker, fiber etc. However, containing of second phase particles enhanced fracture toughness, however flexural strength was degraded. As adding nanosize SiC particles into silicon nitride, the physical properties of fluxural strength, fracture toughness, the modulus of elasticity. In this study, 2wt% $Al_2$O$_3$ and 4 wt% $Y_2$O$_3$ were added into UBE E-10 and 0, 10, 20, 30, 40, 50 vol% nano-SiC powder (Sumitomo T1 powder) were added, respectively. It is hot pressed at 185$0^{\circ}C$ for 1 hour. Most of structural ceramics for engineering application are wear resistance. In this study, wear behaviors (in water) of silicon nitride with varying the amount of nano-size silicon carbide were investigated, and was compared to physical properties. Simultaneously wear mechanism will be found out.

  • PDF

Fabrication and Optical Characterization of Glass-ceramics for IR Reflector (적외선 반사체용 결정화유리 제조 및 광학적 특성평가)

  • 박규한;신동욱;변우봉
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1137-1143
    • /
    • 2001
  • In this study, glass-ceramics containing cordierite(2MgO$.$2Al$_2$O$_3$5SiO$_2$) as a major crystalline phase was prepared from MAS (MgO-Al$_2$O$_3$-SiO$_2$) glass system for the application to reflector. Glasses prepared with addition of TiO$_2$as a nucleating agent were crystallized by two-step heat treatment of nucleation and crystal growth. Then nucleation and crystal growth behavior were investigated and the influence of heat treatment schedule on the nature of crystal phases and the diffuse reflectance spectrum was investigated. As a result, cordierite and rutile were precipitated as a major crystalline phases for the glass-ceramics with the nucleation at 750$^{\circ}C$ for 3 hours and then crystallization at 1100$^{\circ}C$ for 5 hours, and this glass-ceramics showed the reflectance over 90% in 570∼2500nm specturm region.

  • PDF

Electrical Properties of Eco-Friendly RuO2-Based Thick-Film Resistors Containing CaO-ZnO-B2O3-Al2O3-SiO2 System Glass for AlN Substrate (Electrical Properties of Eco-Friendly RuO2-Based Thick-Film Resistors Containing CaO-ZnO-B2O3-Al2O3-SiO2 계 유리가 적용된 질화알루미늄 기판용 RuO2계 친환경 후막저항의 전기적 특성 연구)

  • Kim, Min-Sik;Kim, Hyeong-Jun;Kim, Hyung-Tae;Kim, Dong-Jin;Kim, Young-Do;Ryu, Sung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.467-473
    • /
    • 2010
  • The objective of this study is to prepare lead-free thick film resistor (TFR) paste compatible with AlN substrate for hybrid microelectronics. For this purpose, CaO-ZnO-$B_2O_3-Al_2O_3-SiO_2$ glass system was chosen as a sintering aid of $RuO_2$. The effects of the weight ratio of CaO to ZnO in glass composition, the glass content and the sintering temperature on the electrical properties of TFR were investigated. $RuO_2$ as a conductive and glass powder were dispersed in an organic binder to obtain printable paste and then thick-film was formed by screen printing, followed by sintering at the range between $750^{\circ}C$ and $900^{\circ}C$ for 10 min with a heating rate of $50^{\circ}C$/min in an ambient atmosphere. The addition of ZnO to glass composition and sintering at higher temperature resulted in increasing sheet resistance and decreasing temperature coefficient of resistance. Using $RuO_2$-based resistor paste containing 40 wt%glass of CaO-20.5%ZnO-25%$B_2O_3$-7%$Al_2O_3$-15%$SiO_2$ composition, it is possible to produce thick film resistor on AlN substrate with sheet resistance of $10.6\Omega/\spuare$ and the temperature coefficient of resistance of 702ppm/$^{\circ}C$ after sintering at $850^{\circ}C$.

Effect of SiC Particle Size on Microstructure of $Si_3N_4/SiC$ Nanocomposites ($Si_3N_4/SiC$ 초미립복합체의 미세조직에 미치는 SiC 입자크기의 영향)

  • 이창주;김득중
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.152-157
    • /
    • 2000
  • Si3N4/SiC nanocomposite ceramics containing 5 wt%dispersed SiC particles were prepared by gas-pressure-sintering at 200$0^{\circ}C$ under nitrogen atmosphere. SiC particles with average sizes of 0.2 and 0.5${\mu}{\textrm}{m}$ were used, and the effect of the SiC particle size on the microstructure was investigated. The addition of SiC particles effectively suppressed the growth of the Si3N4 matrix grains. The effect of grain growth inhibition was higher in the nanocomposites dispersed with fine SiC. SiC particles were dispersed uniformly inside Si3N4 matrix grains and on grain boundaries. When the fine SiC particles were added, large fraction of the SiC particles was trapped inside the grains. On the other hand, when the large SiC particles were added, most of the SiC particles were located on grain boundaries. Typically, the fraction of SiC particles located at grain boundaries was higher in the specimen prepared from $\beta$-Si3N4 than in the specimen prepared from $\alpha$-Si3N4.

  • PDF

Corrosive Degradation of MgO/Al2O3-Added Si3N4 Ceramics under a Hydrothermal Condition (MgO/Al2O3가 소결조제로 첨가된 Si3N4 세라믹스의 수열 조건에서의 부식열화 거동)

  • Kim, Weon-Ju;Kang, Seok-Min;Park, Ji-Yeon
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.366-370
    • /
    • 2007
  • Silicon nitride ($Si_3N_4$) ceramics have been considered for various components of nuclear power plants such as the mechanical seal of a reactor coolant pump (RCP), the guide roller for a control rod drive mechanism (CRDM), and a seal support, etc. Corrosion behavior of $Si_3N_4$ ceramics in a high-temperature and high-pressure water must be elucidated before they can be considered as components for nuclear power plants. In this study, the corrosion behaviors of $Si_3N_4$ ceramics containing MgO and $Al_2O_3$ as sintering aids were investigated at a hydrothermal condition ($300^{\circ}C$, 9.0 MPa) in pure water and 35 ppm LiOH solution. The corrosion reactions were controlled by a diffusion of the reactive species and/or products through the corroded layer. The grain-boundary phase was preferentially corroded in pure water whereas the $Si_3N_4$ grain seemed to be corroded at a similar rate to the grain-boundary phase in LiOH solution. Flexural strengths of the $Si_3N_4$ ceramics were significantly degraded due to the corrosion reaction. Results of this study imply that a variation of the sintering aids and/or a control (e.g., crystallization) of the grain-boundary phase are necessary to increase the corrosion resistance of $Si_3N_4$ ceramics in a high-temperature water.

Effect of Additive Amount on Microstructure and Fracture Toughness of SiC-TiC Composites

  • Min-Jin Kim;Young-Wook Kim;Wonjoong Kim;Hun-Jin Lim;Duk-Ho Cho
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.91-95
    • /
    • 2000
  • Powder mixtures of $\beta$-SiC-TiC in a weight ratio of 2:1 containing 5-20 wt% additives ($Al_2O_3$-$Y_2O_3$) were liquid-phase sintered at $1830^{\circ}C$ for 1h by hot-pressing and subsequently annealed at $1950^{\circ}C$ for 6h to enhance grain growth. The annealed specimens revealed a microstructure of \"in situ-toughened composite\" as a result of the $\beta$longrightarrow$\alpha$ phase transformation of SiC during annealing. The increase of the content of additives accelerated the growth of elongated $\alpha$-SiC grains with higher aspect ratio and improved fracture toughness. The fracture toughness of SiC-TiC composite containing 20 wt% additive was 6.2 MPa.$m^{1/2}$.2}$.

  • PDF