• Title/Summary/Keyword: SiC composites

Search Result 743, Processing Time 0.026 seconds

Interfacial Characteristics and Mechanical Properties of HPHT Sintered Diamond/SiC Composites (초고압 소결된 다이아몬드/실리콘 카바이드 복합재료의 계면특성 및 기계적 특성)

  • Park, Hee-Sub;Ryoo, Min-Ho;Hong, Soon-Hyung
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.416-423
    • /
    • 2009
  • Diamond/SiC composites are appropriate candidate materials for heat conduction as well as high temperature abrasive materials because they do not form liquid phase at high temperature. Diamond/SiC composite consists of diamond particles embedded in a SiC binding matrix. SiC is a hard material with strong covalent bonds having similar structure and thermal expansion with diamond. Interfacial reaction plays an important role in diamond/SiC composites. Diamond/SiC composites were fabricated by high temperature and high pressure (HPHT) sintering with different diamond content, single diamond particle size and bi-modal diamond particle size, and also the effects of composition of diamond and silicon on microstructure, mechanical properties and thermal properties of diamond/SiC composite were investigated. The critical factors influencing the dynamics of reaction between diamond and silicon, such as graphitization process and phase composition, were characterized. Key factor to enhance mechanical and thermal properties of diamond/SiC composites is to keep strong interfacial bonding at diamond/SiC composites and homogeneous dispersion of diamond particles in SiC matrix.

Fracture Behaviors and Mechanical Properties of SiCf/SiC Composites Prepared by the Whisker Growing Assisted CVI Process (Whisker Growing Assisted 화학침착 공정으로 제조된 SiCf/SiC 복합체의 파괴거동과 기계강도 평가)

  • Kang, Seok-Min;Kim, Weon-Ju;Yoon, Soon-Gil;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.484-487
    • /
    • 2009
  • $SiC_f$/SiC composites with whiskers and pyrolytic carbon (PyC) coated whiskers in the matrix were fabricated for enhancement of the fracture behaviors by the whisker growing assisted chemical vapor infiltration (WA-CVI) process, respectively. $SiC_f$/SiC composites were also prepared by the conventional CVI process as reference material. The mechanical properties and fracture behaviors were analyzed by comparison of the two types of composites prepared by WA-CVI and conventional CVI. The densities of $SiC_f$/SiC composites were in the range of $2.6{\sim}2.65g/cm^3$. The flexural strengths of composite with whiskers and with those coated by PyC were 650 MPa and 600 MPa, respectively. The tensile strength of composites with whiskers was ${\sim}285$ MPa.

Development of Continuous SiC Fiber Reinforced Magnesium Composites Using Liquid Pressing Process (액상가압성형 공정을 이용한 SiC 연속섬유 강화 마그네슘 복합재료 개발)

  • Cho, Seungchan;Lee, Donghyun;Lee, Young-Hwan;Shin, Sangmin;Ko, Sungmin;Kim, Junghwan;Kim, Yangdo;Lee, Sang-Kwan;Lee, Sang-Bok
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.247-250
    • /
    • 2020
  • In this study, the possibility of manufacturing a magnesium (Mg) composites reinforced with continuous silicon carbide (SiC) fibers was examined using a liquid pressing process. We fabricated uniformly dispersed SiC fiberAZ91 composites using a liquid phase pressing process. Furthermore, the precipitates were controlled through heat treatment. As a continuous Mg2Si phase was formed at the interface between the SiC fiber and the AZ91 matrix alloy, the interfacial bonding strength was improved. The tensile strength at room temperature of the prepared composite was 479 MPa, showing excellent mechanical properties.

Effects of Boride on Properties of SiC Composites (SiC계 복합체의 특성에 미치는 Boride의 영향)

  • Shin, Yong-Deok;Ju, Jing-Young;Jeon, Jae-Duck;So, Byung-Moon;Lee, Dong-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.191-193
    • /
    • 2004
  • The composites were fabricated, respectively, using 61vol.% SiC-39vol.% $TiB_2$ and using 61vol.% SiC-39vol.% $ZrB_2$ powders with the liquid forming additives of 12wt% $Al_2O_3+Y_2O_3$ by hot pressing annealing at $1650^{\circ}C$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, $ZrB_2$ were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H, 3C), $TiB_2$, $ZrB_2$ and $YAG(Al_5Y_3O_{12})$ crystal phase on the SiC-$TiB_2$, and SiC-$ZrB_2$ composites. The ${\beta}\;{\alpha}$-SiC phase transformation was occurred on the $SiC-TiB_2$, $SiC-ZrB_2$ composites. The relative density, the flexural strength and Young's modulus showed respectively value of 98.57%, 226.06Mpa and $86.37{\times}10^3Mpa$ in SiC-$ZrB_2$ composites.

  • PDF

Mechanical and Tribological Properties of Si-SiC-Graphite Composites (Si-SiC-Graphite 복합재료의 기계적 물성과 마찰 마모 특성)

  • 김인섭;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.6
    • /
    • pp.643-652
    • /
    • 1995
  • Si-SiC-graphite composites were developed by incorporating solid lubricant graphite into Si-SiC, in the light of improving tribological properties of Si-SiC ceramics. Si-SiC-graphite composites were fabricated by infilterating silicon melt into the mixture of α-SiC, carbon black and graphite powder at 1750℃ under 3 Torr. The particle size of graphite was in the range of 150 to 500㎛, and the loading content of graphite was 0, 20, 25, 30, 35 vol% in the mixture of α-SiC and carbon black. The mechanical and tribological properties of this composites were studied. The density, hardness, flexural strength, compressive strength and Young's modulus were decreased with increasing of graphite content. An additiion of solid-lubricant graphite up to 30 vol% has improved tribological properties of Si-SiC ceramics without considerable degradation of mechanical properties.

  • PDF

Fabrication of Cu-30 vol% SiC Composites by Pressureless Sintering of Polycarbosilane Coated SiC and Cu Powder Mixtures (Polycarbosilane이 코팅된 SiC와 Cu 혼합분말의 상압소결에 의한 Cu-30 vol% SiC 복합재료의 제조)

  • Kim, Yeon Su;Kwon, Na-Yeon;Jeong, Young-Keun;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.337-341
    • /
    • 2016
  • Cu-30 vol% SiC composites with relatively densified microstructure and a sound interface between the Cu and SiC phases were obtained by pressureless sintering of PCS-coated SiC and Cu powders. The coated SiC powders were prepared by thermal curing and pyrolysis of PCS. Thermal curing at $200^{\circ}C$ was performed to fabricate infusible materials prior to pyrolysis. The cured powders were heated treated up to $1600^{\circ}C$ for the pyrolysis process and for the formation of SiC crystals on the surface of the SiC powders. XRD analysis revealed that the main peaks corresponded to the ${\alpha}$-SiC phase; peaks for ${\beta}$-SiC were newly appeared. The formation of ${\beta}$-SiC is explained by the transformation of thermally-cured PCS on the surface of the initial ${\alpha}$-SiC powders. Using powder mixtures of coated SiC powder, hydrogen-reduced Cu-nitrate, and elemental Cu powders, Cu-SiC composites were fabricated by pressureless sintering at $1000^{\circ}C$. Microstructural observation for the sintered composites showed that the powder mixture of PCS-coated SiC and Cu exhibited a relatively dense and homogeneous microstructure. Conversely, large pores and separated interfaces between Cu and SiC were observed in the sintered composite using uncoated SiC powders. These results suggest that Cu-SiC composites with sound microstructure can be prepared using a PCS coated SiC powder mixture.

Development of Electroconductive SiC Ceramic Heater by Spark Plasma Sintering (방전플라즈마 소결에 의한 자기 통전식 SiC계 세라믹 발열체 개발)

  • Shin, Yong-Deok;Choi, Won-Seok;Ko, Tae-Hun;Lee, Jung-Hoon;Ju, Jin-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.770-776
    • /
    • 2009
  • The composites were fabricated by adding 0, 15, 30, 45[vol.%] $ZrB_2$ powders as a second phase to SiC matrix. The physical, mechanical and electrical properties of electroconductive SiC ceramic composites by spark plasma sintering(SPS) were investigated. Reactions between ${\beta}$-SiC and $ZrB_2$ were not observed in the XRD and the phase analysis of the electroconductive SiC ceramic composites. The relative density of mono ${\beta}$-SiC, ${\beta}$-SiC+15[vol.%]$ZrB_2$, ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]$ZrB_2$ composites are respectively 99.24[%], 87.53[%], 96.41[%] and 98.11[%] Phase analysis of the electroconductive SiC ceramic composites by XRD revealed mostly of ${\beta}$-SiC, $ZrB_2$ and weakly of $ZrO_2$ phase. The flexural strength showed the lowest of 114.44[MPa] for ${\beta}$-SiC+15[vol.%]$ZrB_2$ powders and showed the highest of 210.75[MPa] for composite no added with $ZrB_2$ powders at room temperature. The trend of the mechanical properties of the electroconductive SiC ceramic composites is accorded with the trend of the relative density. The electrical resistivity of the electroconductive SiC ceramic composites decreased with increased $ZrB_2$ contents. The electrical resistivity of mono ${\beta}$-SiC, ${\beta}$-SiC+15[vol.%]$ZrB_2$, ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]$ZrB_2$ composites are respectively $4.57{\times}10^{-1},\;2.13{\times}10^{-1},\;2.68{\times}10^{-2}\;and\;1.99{\times}10^{-2}[{\Omega}{\cdot}cm]$ at room temperature. The electrical resistivity of mono ${\beta}$-SiC and ${\beta}$-SiC+15[vol.%]$ZrB_2$ are negative temperature coefficient resistance(NTCR) in temperature ranges from $25[^{\circ}C]\;to\; 100[^{\circ}C]$. The electrical resistivity of ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]ZrB_2$ are positive temperature coefficient resistance(PTCR) in temperature ranges from $25[^{\circ}C]\;to\;100[^{\circ}C]$. It is convinced that ${\beta}$-SiC+30[vol.%]$ZrB_2$ composites by SPS for heater or ignitors can be applied.

Properties of SiC Electrocondutive Ceramic Composites according to Transition Metal (천이금속 영향에 따른 SiC계 도전성 세라믹 복합체의 특성)

  • Shin, Yong-Deok;Oh, Sang-Soo;Jeon, Jae-Duck;Park, Young;Yim, Seung-Hyuk;Lee, Dong-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1588-1590
    • /
    • 2004
  • The composites were fabricated, respectively, using 61vol.% SiC - 39vol.% $TiB_2$ and using 61vol.% SiC 39vol.% WC powders with the liquid forming additives of 12wt% $Al_2O_3+Y_2O_3$ by pressureless annealing at 1800$^{\circ}C$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, WC were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H), $TiB_2$ and YAG($Al_5Y_3O_{12}$) crystal phase on the SiC-$TiB_2$, and SiC(2H), WC and YAG($Al_5Y_3O_{12}$) crystal phase on the SiC-WC composites. ${\beta}{\rightarrow}{\alpha}$-SiC phase transformation was ocurred on the SiC-$TiB_2$, but ${\alpha}{\rightarrow}{\beta}$-SiC reverse transformation was not occurred on the SiC-WC composites. The relative density, the flexural strength showed respectively value of 96.2%, 310.19Mpa in SiC-WC composites. The electrical resistivity of the SiC-$TiB_2$ and the SiC-WC composites is all positive temperature cofficient resistance(PTCR) in the temperature ranges from 25$^{\circ}C$ to 500$^{\circ}C$.

  • PDF

Effect of Compositional Parameters on the Characteristics of C-SiC-$B_4C$ Composites

  • Aggarwal, R.K.;Bhatia, G.B.;Saha, M.;Mishra, A.
    • Carbon letters
    • /
    • v.5 no.4
    • /
    • pp.164-169
    • /
    • 2004
  • Carbon-ceramic composites refer to a special class of carbon based materials which cover the main drawbacks of carbon, particularly its proneness to air oxidation, while essentially retaining its outstanding properties. In the present paper, the authors report the results of a systematic study made towards the development of C-SiC-$B_4C$ composites, which involves the effects of compositional parameters, namely, carbon-to-ceramic and ceramic-to-ceramic ratios, on the oxidation behaviour as well as other characteristics of these composites. The C-SiC-$B_4C$ composites, heat-treated to $1400^{\circ}C$, have shown that their oxidation behaviour at temperatures of 800~$1200^{\circ}C$ depends jointly on the total ceramic content and the SiC : $B_4C$ ratio. Good compositions of C-SiC-$B_4C$ composites exhibiting zero weight loss in air at temperatures of 800~$1200^{\circ}C$ for periods of 4~9 h, have been identified. Composites with these compositions undergo a weight gain or a maximum weight loss of less than 3% during the establishment of a protective layer at the surface of carbon in a period of 1~6 h. Significant improvement in the strength of C-SiC-$B_4C$ composites has been observed which increases with an increase in the total ceramic content and also with an increase in the SiC : $B_4C$ ratio.

  • PDF

Properties of SiC-$ZrB_2$ Electroconductive Ceramic Composites by Spark Plasma Sintering (방전플라즈마 소결에 의한 SiC-$ZrB_2$ 도전성 세라믹 복합체 특성)

  • Shin, Yong-Deok;Ju, Jin-Young;Jo, Sung-Man;Lee, Jung-Hoon;Kim, Cheol-Ho;Lee, Hee-Seung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1252_1253
    • /
    • 2009
  • The composites were fabricated by adding 0, 15, 20, 25[vol.%] Zirconium Diboride(hereafter, $ZrB_2$) powders as a second phase to Silicon Carbide(hereafter, SiC) matrix. The physical, mechanical and electrical properties of electroconductive SiC ceramic composites by spark plasma sintering(hereafter, SPS) were examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed in the XRD analysis The relative density of mono SiC, SiC+15[vol.%]$ZrB_2$, SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ composites are 90.97[%], 74.62[%], 77.99[%] and 72.61[%] respectively. The XRD phase analysis of the electroconductive SiC ceramic composites reveals high of SiC and $ZrB_2$ and low of ZrO2 phase. The electrical resistivity of mono SiC, SiC+15[vol.%]$ZrB_2$, SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ composites are $4.57{\times}10^{-1}$, $2.13{\times}10^{-1}$, $1.53{\times}10^{-1}$ and $6.37{\times}10^{-2}[{\Omega}{\cdot}cm]$ at room temperature, respectively. The electrical resistivity of mono SiC, SiC+15[vol.%]$ZrB_2$, SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ are Negative Temperature Coefficient Resistance(hereafter, NTCR) in temperature ranges from 25[$^{\circ}C$] to 100[$^{\circ}C$]. It is convinced that SiC+20[vol.%]$ZrB_2$ composite by SPS can be applied for heater above 1000[$^{\circ}C$].

  • PDF