• 제목/요약/키워드: SiC Paper

검색결과 943건 처리시간 0.032초

고온용 압력센서 응용을 위한 in-situ 인(P)-도핑 LPCVD Poly Si 전극 (In-situ P-doped LPCVD Poly Si Films as the Electrodes of Pressure Sensor for High Temperature Applications)

  • 최경근;기종;이정윤;강문식
    • 센서학회지
    • /
    • 제26권6호
    • /
    • pp.438-444
    • /
    • 2017
  • In this paper, we focus on optimization of the in-situ phosphorous (P) doping of low-pressure chemical vapor deposited (LPCVD) poly Si resistors for obtaining near-zero temperature coefficient of resistance (TCR) at temperature range from 25 to $600^{\circ}C$. The deposited poly Si films were annealed by rapid thermal anneal (RTA) process at the temperature range from 900 to $1000^{\circ}C$ for 90s in nitrogen ambient to relieve intrinsic stress and decrease the TCR in the poly Si layer and get the Ohmic contact. After the RTA process, a roughness of the thin film was slightly changed but the grain size and crystallinity of the thin film with the increase in anneal temperature. The film annealed at $1,000^{\circ}C$ showed the behavior of Schottky contact and had dislocations in the films. Ohmic contact and TCR of $334.4{\pm}8.2$ (ppm/K) within 4 inch wafer were obtained in the measuring temperature range of 25 to $600^{\circ}C$ for the optimized 200 nm thick-poly Si film with width/length of $20{\mu}m/1,800{\mu}m$. This shows the potential of in-situ P doped LPCVD poly Si as a resistor for pressure sensor in harsh environment applications.

결정질 실리콘 태양전지 적용을 위한 HWCVD $SiN_x$ 막 연구 ($SiN_x$ Film Deposited by Hot Wire Chemical Vapor Deposition Method for Crystalline Silicon Solar Cells)

  • 김하영;박민경;김민영;최정호;노시철;서화일
    • 반도체디스플레이기술학회지
    • /
    • 제13권3호
    • /
    • pp.27-33
    • /
    • 2014
  • To develop high efficiency crystalline solar cells, the $SiN_x$ film for surface passivation and anti-reflection coating is very important and it is generally deposited by PECVD. In this paper, the $SiN_x$ film deposited by Hot-Wire chemical vapor deposition(HWCVD) that has no plasma damage was studied. First, to optimize the $SiN_x$ film deposition process, $SiH_4$ gas rate and substrate temperature were varied and then refractive index and thickness were measured. When $SiH_4$ gas rate was 22sccm and substrate temperature was $100^{\circ}C$, refractive index was 1.94 and higher than that of other process conditions. Second, the lifetime was measured by varying the annealing temperature and time. The annealing process was made from 5 to 30 minutes at $300{\sim}500^{\circ}C$. When the annealing temperature was $100^{\circ}C$ and time was 10minute, the lifetime was the highest. The lifetime of annealed samples was also measured after the firing process at $975^{\circ}C$. Although the lifetime of all samples was decreased by firing process, the lifetime of annealed samples before the firing process was higher than that of fired samples only. Finally, the characteristics of solar cells with HWCVD $SiN_x$ film were measured.

손상치유 능력을 가지는 탄화규소의 강도 특성과 탄성파 특성 (Strength Properties and Elastic Waves Characteristics of Silicon Carbide with Damage-Healing Ability)

  • 김미경;안병건;김진욱;박인덕;안석환;남기우
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.337-341
    • /
    • 2004
  • Engineering ceramics have superior heat resistance, corrosion resistance, and wear resistance. Consequently, these art significant candidates for hot-section structural components of heat engine and the inner containment of nuclear fusion reactor. Besides, some of them have the ability to heal cracks and great benefit can be anticipated with great benefit the structural engineering field. Especially, law fracture toughness of ceramics supplement with self-healing ability. In the present study, we have been noticed some practically important points for the healing behavior of silicon nitride, alumina, mullite with SiC particle and whisker. The presence of silicon carbide (SiC) in ceramic compound is very important for crack-healing behavior. However, self-healing of SiC has not been investigated well in detail yet. In this study, commercial SiC was selected as sample, which can be anticipated in the excellent crack healing ability. The specimens were produced three-point bending specimen with a critical semi-circular crack of which size that is about $50-700{\mu}m$. Three-point bending test and static fatigue test were performed cracked and healed SiC specimens. A monotonic bending load was applied to cracked specimens by three-point loading at different temperature. The purpose of this paper is to report Strength Properties and Elastic Waves Characteristics of Silicon Carbide with Crack Healing Ability.

  • PDF

$\textrm{BF}_2$가 고농도로 이온주입된 $\textrm{p}^{+}$-Si 영역상에 Co/Ti 이중막 실리사이드의 형성 (Co/Ti Bilayer Silicidation on the $\textrm{p}^{+}$-Si Region Implanted with High Dose of $\textrm{BF}_2$)

  • 장지근;신철상
    • 한국재료학회지
    • /
    • 제9권2호
    • /
    • pp.168-172
    • /
    • 1999
  • 보른이 고농도 도핑된 $\textrm{p}^{+}$-Si 영역상에서 비저항이 낮고 열적 안정성이 우수한 Co/Ti 이중막 실리사이드의 형성을 연구하였다. 본 연구에서는 Co/Ti 이중막 실리사이드는 청결한 $\textrm{p}^{+}$-Si 기판상에 Co(150${\AA}$)/Ti(50${\AA}$) 박막을 E-beam 기술로 진공증착하고 질소분위기($\textrm{10}^{-1}$atm)에서 2단계 RTA 공정(1차열처리:$650^{\circ}C$/20sec, 2차열처리:$800^{\circ}C$/20sec)을 수행하여 제작된다. 실험에서 얻어진 Co/Ti 이중막 실리사이드는 약 500${\AA}$의 균일한 두께를 갖고 18$\mu\Omega$-cm의 낮은 비저항 특성을 나타내었으며, $1000^{\circ}C$에 이르기까지 장시간 후속 열처리를 실시하여도 면저항 변화나 열응집 현상이 발생되지 않았다.

  • PDF

Characterization of SiC/C Nanocomposite Powders Synthesized by Arc-Discharge

  • Zhou, Lei;Yu, Jie Yi;Gao, Jian;Wang, Dong Xing;Gan, Xiao Rong;Xue, Fang Hong;Huang, Hao;Dong, Xing Long
    • Applied Microscopy
    • /
    • 제45권4호
    • /
    • pp.242-248
    • /
    • 2015
  • In this paper, three carbon sources, i.e., solid graphite, gaseous CH4 and liquid ethanol, and one solid silicon source were employed to synthesize SiC/C nanocomposite powders by arc-discharge plasma. The processing conditions such as the component ratios of raw materials, atmospheric gases, etc. were adjusted for controllable synthesis of the nanopowders. It is indicated that both of solid graphite and silicon can be co-evaporated and reacted to form nanophases of cubic ${\beta}$-SiC with ~50 nm in mean size and a little free graphite; the carbon atoms decomposed from gaseous $CH_4$ favor to combine with the evaporated silicon atoms to form the dominant SiC nanophase; liquid carbon source of ethanol can also be used to harvest the main ${\beta}$-SiC and minor 6H-SiC phases in the assembly of nanoparticles. The as-prepared SiC/C nanocomposite powders were further purified by a heat-treatment in air and their photocatalytic performances were then greatly improved.

비정질실리콘 박막 트랜지스터 (Hydrogenated a-Si TFT Using Ferroelectrics)

  • 허창우
    • 한국정보통신학회논문지
    • /
    • 제9권3호
    • /
    • pp.576-581
    • /
    • 2005
  • 강유전체$(SrTiO_3)$ 박막을 게이트 절연층으로 하여 수소화 된 비정질 실리콘 박막 트랜지스터를 유리 기판 위에 제조하였다. 강유전체는 기존의 $SiO_2,\;SiN$ 등과 같은 게이트 절연체에 비하여 유전특성이 매우 뛰어나 TFT의 ON 전류를 증가시키고 문턱전압을 낮추며 항복특성을 개선하여 준다. PECVD에 의하여 증착된 a-Si:H는 FTIR 측정 결과 $2,000cm^{-1}$$876cm^{-1}$에서 흡수 밴드가 나타났으며, $2,000cm^{-1}$$635cm^{-1}$$SiH_1$의 stretching과 rocking 모드에 기인한 것이며 $876cm^{-1}$의 weak 밴드는 $SiH_2$ vibration 모드에 의한 것이다. a-SiN:H는 optical bandgap이 2.61 eV이고 굴절률은 $1.8\~2.0$, 저항률은 $10^{11}\~10^{15}\Omega-cm$ 정도로 실험 조건에 따라 약간 다르게 나타난다. 강유전체$(SrTiO_3)$ 박막의 유전상수는 $60\~100$ 정도이고 항복전계는 IMV/cm 이상으로 우수한 절연특성을 갖고 있다. 강유전체를 이용한 TFT의 채널 길이는 $8~20{\mu}m$, 채널 넓이는 $80~200{\mu}m$로서 드레인 전류가 게이트 전압 20V에서 $3.4{\mu}A$이고 $I_{on}/I_{off}$ 비는 $10^5\~10^8,\;V_{th}$$4\~5\;volts$이다.

실리콘기판 직접접합에 있어서 HF 전처리 조건에 따른 초기접합에 관한 연구 (Study on pre-bonding according with HF pre-treatment conditions in Si wafer direct bonding)

  • 강경두;박진성;정수태;주병권;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.370-373
    • /
    • 1999
  • Si direct bonding (SDB) technology is very attractive for both Si-on-insulator(SOI) electric devices and MEMS applications because of its stress free structure and stability. This paper presents on- pre treatment conditions in Si wafer direct bonding, The paper resents on pre-bonding according to HF pre-treatment conditions in Si wafer direct bonding. The characteristics of bonded sample were measured under different bonding conditions of HF concentration, applied pressure and annealing temperature(200~ 100$0^{\circ}C$) after pre-bonding. The bonding strength was evaluated by tensile strength method. The bonded interface and the void were analyzed by using SEM and IR camera, respectively, Components existed in the interlayer were analyzed by using FT-IR. The bond strength depends on the HF pre-treatment condition before pre-bonding(Min 2.4kgf/$\textrm{cm}^2$~ Max : 14.kgf/$\textrm{cm}^2$)

  • PDF

6H-SiC 기판 위에 혼합소스 HVPE 방법으로 성장된 AlN 에피층 특성 (Properties of AlN epilayer grown on 6H-SiC substrate by mixed-source HVPE method)

  • 박정현;김경화;전인준;안형수;양민;이삼녕;조채용;김석환
    • 한국결정성장학회지
    • /
    • 제30권3호
    • /
    • pp.96-102
    • /
    • 2020
  • 본 논문에서는 6H-SiC (0001) 기판 위에 AlN 에피층을 혼합 소스 수소화물 기상 에피택시 방법에 의해 성장하였다. 시간당 5 nm의 성장률로 0.5 ㎛ 두께의 AlN 에피층을 얻었다. FE-SEM과 EDS 결과를 통해 6H-SiC (0001) 기판 위에 성장된 AlN 에피층 표면을 조사하였다. HR-XRD와 계산식을 통해 전위 밀도를 예측하였다. 1.4 × 109 cm-2의 나사 전위 밀도와 3.8 × 109 cm-2의 칼날 전위 밀도를 가지는 우수한 결정질의 AlN 에피층을 확인하였다. 혼합소스 HVP E 방법에 의해 성장된 6H-SiC 기판 위의 AlN 에피층은 전력소자 등에 응용이 가능할 것으로 판단된다.

회로해석 및 PCB 전자장 분석을 위한 웹 기반 자동화 프로세스에 관한 연구 (A Study on Automation Process Based on WEB for Circuit and PCB EM Analysis)

  • 이장훈;장석환;정성일;이승요
    • 전기학회논문지
    • /
    • 제63권12호
    • /
    • pp.1716-1721
    • /
    • 2014
  • In this paper, a study on automation method for the circuit/EM (Electro-Magnetic) simulation is carried out to analyze effectively the SI/PI (Signal Integrity/Power Integrity) issues which occur on circuits and/or PCBs (Printed Circuit Boards). For the automation of the circuit/EM simulation, algorithms performing each process of the SI/PI analysis automatically (such as ports setup, circuit definition and SI/PI evaluation) are developed; thereby automation system for the SI/PI analysis is constructed with the algorithms. The automation of the circuit/EM simulation is accomplished in the environment of the C/S (Client/Server) architecture in order to reduce resources such as high cost computers demanded for the SI/PI analysis. The automation method for the SI/PI analyses proposed in this paper reduces effort, time, and cost spent on the environment setup for simulation and the SI/PI analysis process. In addition, the proposed method includes automation of the documenting process, which organizes, records and displays the SI/PI analysis results automatically for users.

고온 전자빔 증착에 의한 Ethylene Terephthalate상의 SiOx 박막의 특성 평가 (Characteristics of Defects in SiOx Thin films on Ethylene Terephthalate by High-temperature E-beam Deposition)

  • 한진우;김영환;김종환;서대식;문대규
    • 한국전기전자재료학회논문지
    • /
    • 제19권1호
    • /
    • pp.71-74
    • /
    • 2006
  • In this paper, we investigated the characterization of silicon oxide(SiOx) thin film on Ethylene Terephthalate(PET) substrates by e-beam deposition for transparent barrier application. The temperature of chamber increases from $30^{\circ}C$ to $110^{\circ}C$, the roughness increase while the Water vapor transmission rate (WVTR) decreases. Under these conditions, the WVTR for PET can be reduced from a level of $0.57 g/m^2/day$ (bare subtrate) to $0.05 g/m^2/day$ after application of a 200-nm-thick $SiO_2$ coating at 110 C. A more efficient way to improve permeation of PET was carried out by using a double side coating of a 5-${\mu}m$-thick parylene film. It was found that the WVTR can be reduced to a level of $-0.2 g/m^2/day$. The double side parylene coating on PET could contribute to the lower stress of oxide film, which greatly improves the WVTR data. These results indicates that the $SiO_2$ /Parylene/PET barrier coatings have high potential for flexible organic light-emitting diode(OLED) applications.