• Title/Summary/Keyword: SiC C3M

Search Result 1,709, Processing Time 0.034 seconds

The Distribution Behavior of Alloying Elements in Matrices and Carbides of Chromium White Cast Iron (크롬백주철의 기지조직 및 탄화물에 있어서 합금원소의 거동)

  • Ryu, Seong-Gon
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.489-492
    • /
    • 2000
  • Three different white cast irons alloyed with Cr and Si were prepared in order to study their distribution be-havior in matrices and carbides. The specimens were produced using a 15kg-capacity high frequency induction fur-nace. Melts were super-heated to $1600^{\circ}C$, and poured at $1550^{\circ}C$ into a pepset mold. Three combinations of the alloys were selected so as to observe the distribution behavior of Cr and Si : 0.5%C-25.0%Cr-1.0%Si(alloy No. 1), 0.5%C-5.0%Cr-1.0%Si(alloy No. 2) and 2.0%C-5.0%Cr-1.0%Si(alloy No. 3). Cellular $M_7C_3$ carbides-$\delta$ferrite eutectic were developed at $\delta$ferrite liquid interfaces in the alloy No. 1 while only traces of $M_7C_3$ carbides-$\delta$ferrite eutectic were precipitated in the alloy No. 2. With the addition of 2.0% C and 5.0% Cr, ledeburitic $M_3C$ carbides instead of cellular $M_7C_3$ carbides were precipitated in the alloy No. 3. Cr was distributed preferentially to the $M_7C_3$ carbides rather than to the matrix structure while more Si was partitioned in the matrix structure rather than the $M_7C_3$ carbides. $K^m$ for Cr was ranged from 0.56 to 0.68 while that for Si was from 1.12 to 1.28. $K^m$ for Cr had a lower value with increased carbon contents. The mass percent of Cr was higher in the $M_7C_3$ carbides with increased Cr contents.

  • PDF

Epitaxial growth of in-situ doped polycrystalline 3C-SiC for M/NEMS application (M/NEMS용 in-situ 도핑된 다결정 3C-SiC 박막 성장)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.18-19
    • /
    • 2008
  • Polycrystalline(poly) 3C-SiC film is a promising structural material for M/NEMS used in harsh environments, bio and fields. In order to realize poly 3C-SiC based M/NEMS devices, the electrical properties of poly 3C-SiC film have to be optimized. The n-type poly 3C-SiC thin film is deposited by APCVD using HMDS$(Si_2(CH_3)_6)$ as single precursor and are in-situ doped using N2. Resistivity values as low as 0.014 $\Omega$cm were achieved. The carrier concentration increased with doping from $3.0819\times10^{17}$ to $2.2994\times10^{19}cm^{-3}$ and electronicmobility increased from 2.433 to 29.299 $cm^2/V{\cdot}s$.

  • PDF

R-Curve Behavior and Mechanical Properties of Al2O3 Composites Containing SiC and TiC Particles (SiC와 TiC 입자를 함유하는 Al2O3 입자복합체의 균열저항거동과 기계적 성질)

  • Na, Sang-Woong;Lee, Jae-Hyung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.413-419
    • /
    • 2002
  • Particulate composites of $Al_2O_3$/TiC/SiC, $Al_2O_3$/TiC and $Al_2O_3$/SiC have been fabricated by hot pressing and their R-curve behaviors and mechanical properties were investigated. $Al_2O_3$ containing 30 vol% TiC particles showed higher toughness by 8% than that for monolithic alumina and its fracture strength was increased significantly by approximately 30%. On the other hand, the addition of 30 vol% SiC of $3{\mu}m$ in $Al_2O_3$ decreased the fracture strength slightly but induced a rising R-curve behavior owing to the strong crack bridging of SiC particles. In case of $Al_2O_3$/TiC/SiC, arising R-curve behavior was also observed and the fracture toughness reached 6.6 MPa${\cdot}\sqrt{m}$ at the crack length of $1000{\mu}m$, which was lower than that of $Al_2O_3$/SiC, however, while the fracture strength was higher by about 20%. The fracture toughness seemed to be decreased as smaller TiC particles roughened the SiC interface and pullout of the SiC particles for crack bridging became less active.

Effect of SiC Particles Size on the Densification of $Al_2O_3-SiC$ Composite During Pressureless Sintering ($Al_2O_3-SiC$ 복합재료의 상압소결시 치밀화에 미치는 SiC 원료분말의 크기영향)

  • 채기웅
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.11
    • /
    • pp.1261-1265
    • /
    • 1999
  • Effect of SiC particle size of the densification of Al2O3-SiC composite during pressureless sintering was investigated. Two types of SiC powders having average particle size of 0.15${\mu}{\textrm}{m}$ and 3${\mu}{\textrm}{m}$ were used. Densification rate of the specimen containing 0.15${\mu}{\textrm}{m}$ SiC particles was slower than that of the specimen containg 3${\mu}{\textrm}{m}$ SiC particles. Although the relative density of the specimen containing 0.15${\mu}{\textrm}{m}$ SiC particles was below 90% of theoretical density after sintering at 155$0^{\circ}C$ the complete closure of open pores occurred. Therefore full densification could be obtained by subsequent HIP. On the other hand in the specimen containing 3${\mu}{\textrm}{m}$ SiC particles the complete closed pore was observed at 95% of theoretical density. Such a fast pore closure in the specimen containing 0.15${\mu}{\textrm}{m}$ SiC particles is likely to occur as a result of dense reaction layer formation on the specimen surface which is attributed to the high reactivity of small size particles with sintering atmosphere.

  • PDF

Growth of polycrystalline 3C-SiC thin films for M/NEMS applications by CVD (CVD에 의한 M/NEMS용 다결정 3C-SiC 박막 성장)

  • Chung, Gwiy-Sang;Kim, Kang-San;Jeong, Jun-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.85-90
    • /
    • 2007
  • This paper presents the growth conditions and characteristics of polycrystalline 3C-SiC (silicon carbide) thin films for M/NEMS applications related to harsh environments. The growth of the 3C-SiC thin film on the oxided Si wafers was carried out by APCVD using HMDS (hexamethyildisilane: $Si_{2}(CH_{3})_{6})$ precursor. Each samples were analyzed by XRD (X-ray diffraction), FT-IR (fourier transformation infrared spectroscopy), RHEED (reflection high energy electron diffraction), GDS (glow discharge spectrometer), XPS (X-ray photoelectron spectroscopy), SEM (scanning electron microscope) and TEM (tunneling electro microscope). Moreover, the electrical properties of the grown 3C-SiC thin film were evaluated by Hall effect. From these results, the grown 3C-SiC thin film is very good crystalline quality, surface like mirror and low defect. Therefore, the 3C-SiC thin film is suitable for extreme environment, Bio and RF M/NEMS applications in conjunction with Si fabrication technology.

High Strength $Si_3N_4/SiC$ Structural Ceramics (고강도 $Si_3N_4/SiC$ 구조세라믹스에 관한 연구)

  • 김병수;김인술;장윤식;박홍채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.12
    • /
    • pp.999-1006
    • /
    • 1993
  • Si3N4(p)-SiC(p) composites were prepared by gas pressure sintering at 190$0^{\circ}C$ for 1 hour. $\alpha$-SiC with average particle size of 0.48${\mu}{\textrm}{m}$ were dispersed from zero to 50vol% in $\alpha$-Si3N4 with average particle size of 0.5${\mu}{\textrm}{m}$. Y2O3-Al2O3 system was used as sintering aids. When 10vol% of SiC was added to Si3N4, optimum mechanical properties were observed; relative density of 98.8%, flextural strength of 930MPa, fracture toughness of 5.9MPa.m1/2 and hardness value of 1429kg/$\textrm{mm}^2$. Grain growth of $\beta$-Si3N4 was inhibited as the amount of added SiC was increased. SiC particles were found inside the $\beta$-Si3N4 intragrains in case of 10, 20 and 30vol%SiC added composites.

  • PDF

Characteristics of poly 3C-SiC doubkly clamped beam micro resonators (양단이 고정된 빔형 다결정 3C-SiC 마이크로 공진기의 특성)

  • Ryu, Kyeong-Il;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.217-217
    • /
    • 2009
  • This paper describes the characteristics of polycrystalline 3C-SiC doubly clamped beam micro resonators. The polycrystalline 3C-SiC doubly clamped beam resonators with 60 ~ 100 ${\mu}m$ lengths, $10\;{\mu}m$ width, and $0.4\;{\mu}m$ thickness were fabricated using a surface micromachining technique. Polycrystalline 3C-SiC micro resonators were actuated by piezoelectric element and their fundamental resonant frequency was measured by a laser vibrometer in vacuum at room temperature. For the 60 ~ 100 ${\mu}m$ long cantilevers, the fundamental frequency appeared at 373.4 ~ 908.1 kHz. The resonant frequencies of doubly clamped beam with lengths were higher than simulated results because of tensile stress. Therefore, polycrystalline 3C-SiC doubly clamped beam micro resonators are suitable for RF MEMS devices and bio/chemical sensor applications.

  • PDF

Characteristics of in-situ doped polycrystalline 3C-SiCthin films for M/NEMS applications (In-situ 도핑된 M/NEMS용 다결정 3C-SiC 박막의 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.325-328
    • /
    • 2008
  • This paper describes the electrical properties of poly (polycrystalline) 3C-SiC thin films with different nitrogen doping concentrations. In-situ doped poly 3C-SiC thin films were deposited by APCVD at $1200^{\circ}C$ using HMDS (hexamethyildisilane: $Si_2(CH_3)_6)$) as Si and C precursor, and $0{\sim}100$ sccm $N_2$ as the dopant source gas. The peak of SiC is appeared in poly 3C-SiC thin films grown on $SiO_2/Si$ substrates in XRD(X-ray diffraction) and FT-IR(Fourier transform infrared spectroscopy) analyses. The resistivity of poly 3C-SiC thin films decreased from $8.35{\Omega}{\cdot}cm$ with $N_2$ of 0 sccm to $0.014{\Omega}{\cdot}cm$ with 100 sccm. The carrier concentration of poly 3C-SiC films increased with doping from $3.0819{\times}10^{17}$ to $2.2994{\times}10^{19}cm^{-3}$ and their electronic mobilities increased from 2.433 to $29.299cm^2/V{\cdot}S$, respectively.

A study on polycrystalline 3C-SiC etching with magnetron applied reactive ion etching for M/NEMS applications (마그네트론 RIE을 이용한 M/NEMS용 다결정 3C-SiC 식각 연구)

  • Chung, Gwiy-Sang;Ohn, Chang-Min;Nam, Chang-Woo
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.197-201
    • /
    • 2007
  • The magnetron reactive ion etching (RIE) characteristics of polycrystalline (poly) 3C-SiC grown on $SiO_{2}$/Si substrate by APCVD were investigated. Poly 3C-SiC was etched by $CHF_{3}$ gas, which can form a polymer as a function of side wall protective layers, with additive $O_{2}$ and Ar gases. Especially, it was performed in magnetron RIE, which can etch SiC at a lower ion energy than a commercial RIE system. Stable etching was achieved at 70 W and the poly 3C-SiC was undamaged. The etch rate could be controlled from $20\;{\AA}/min$ to $400\;{\AA}/min$ by the manipulation of gas flow rates, chamber pressure, RF power, and electrode gap. The best vertical structure was improved by the addition of 40 % $O_{2}$ and 16 % Ar with the $CHF_{3}$ reactive gas. Therefore, poly 3C-SiC etched by magnetron RIE can expect to be applied to M/NEMS applications.

Characteristics of polycrystalline 3C-SiC thin films grown on AlN buffer layer for M/NEMS applications (AlN 버퍼층위에 성장된 M/NEMS용 다결정 3C-SiC 박막의 특성)

  • Chung, Gwiy-Sang;Kim, Kang-San;Lee, Jong-Hwa
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.457-461
    • /
    • 2007
  • This paper describes the characteristics of poly (polycrystalline) 3C-SiC grown on $SiO_{2}$ and AlN substrates, respectively. The crystallinity and the bonding structure of poly 3C-SiC grown on each substrate were investigated according to various growth temperatures. The crystalline quality of poly 3C-SiC was improved from resulting in decrease of FWHM (full width half maximum) of XRD and FT-IR by increasing the growth temperature. The minimum growth temperature of poly 3C-SiC was $1100^{\circ}C$. The surface chemical composition and the electron mobility of poly 3C-SiC grown on each substrate were investigated by XPS and Hall Effect, respectively. The chemical compositions of surface of poly 3C-SiC films grown on $SiO_{2}$ and AlN were not different. However, their electron mobilities were $7.65{\;}cm^{2}/V.s$ and $14.8{\;}cm^{2}/V.s$, respectively. Therefore, since the electron mobility of poly 3C-SiC films grown on AlN buffer layer was two times higher than that of 3C-SiC/$SiO_{2}$, a AlN film is a suitable material, as buffer layer, for the growth of poly 3C-SiC thin films with excellent properties for M/NEMS applications.