• Title/Summary/Keyword: SiC 섬유

Search Result 135, Processing Time 0.031 seconds

Thermal Conducting Behavior of Composites of Conjugated Short Fibrous-SiC Web with Different Filler Fraction (짧은 섬유상간의 접합을 가진 Silicon Carbide Web 복합재료의 분율별 열전도 거동)

  • Kim, Tae-Eon;Bae, Jin Chul;Cho, Kwang Yeon;Lee, Dong Jin;Shul, Yong-Gun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.549-555
    • /
    • 2012
  • Silicon carbide(SiC) exhibits many unique properties, such as high strength, corrosion resistance, and high temperature stability. In this study, a SiC-fiber web was prepared from polycarbosilane(PCS) solution by employing the electrospinning process. Then, the SiC-fiber web was pyrolyzed at $1800^{\circ}C$ in argon atmosphere after it was subjected to a thermal curing. The SiC-fiber web (ground web)/phenolic resin (resol) composite was fabricated by hot pressing after mixing the SiC-fiber web and the phenolic resin. The SiC-fiber web composition was controlled by changing the fraction of filler (filler/binder = 9:1, 8:2, 7:3, 6:4, 5:5). Thermal conductivity measurement indicates that at the filler content of 60%, the thermal conductivity was highest, at 6.6 W/mK, due to the resulting structure formed by the filler and binder being closed-packed. Finally, the microstructure of the composites of SiC-fiber web/resin was investigated by FE-SEM, EDS, and XRD.

Analysis of fiber and pigment in Palsapumdo from Hyeonchungsa (현충사관리소 소장 팔사품도(八賜品圖)에 사용된 직물 · 종이 섬유 식별 및 안료 분석)

  • Park, Ji-Hee;Kim, So-Jin;Kim, Soon-Kwan
    • 보존과학연구
    • /
    • s.32
    • /
    • pp.75-87
    • /
    • 2011
  • The materials analysis is important in conservation science for cultural assets since conservators can make appropriate decision of treatment and environment through understanding manufacturing, period and materials. Palsapumdo is the painting of Palsapum which was given by Yi Sun-shin from the emperor Shinjong in The Ming Dynasty. Palsapumdo painted with various pigments on the fabric has remained to adhere a sheet of lining paper. In this study, we carried out the fiber identification about the fabric and lining paper and the analysis of the pigments. This study identified a fabric and a lining paper and analised pigments for the painting. As a result of fabric analysis, it was confirmed as cotton because ribbon twists and shape of kidney bean in a cross section. After the analysis of lining paper, color changed to yellow by Graff "C" staining tests, and had short fiber and tracheid. Therefore, it is supposed to be a paper which is made of conifer pulp. In addition, the results of SEM-EDS, the pigments are indicated as Orpiment($As_2S_3$), Minium($Pb_3O_4$), Hematite($Fe_2O_3$), Emeraldgreen ($C_2H_3As_3Cu_2O_8$), Ultramarine [$2(Na_2O{\cdot}Al_2O_3{\cdot}2SiO_2){\cdot}Na_2S_2$], talc[$Mg_3Si_4O_{10}(OH)_2$], bariumsulfate($BaSO_4$) and brass.

  • PDF

Application of Weifull강s Theory to Evaluation of Strength for Ceramic Fibers (Ceramic 섬유의 강도 평가에 대한 Weibll 이론의 적용)

  • 이지환;김현수;한상훈
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.1043-1049
    • /
    • 1990
  • In this work, strength of ceramic fibers and monofilament composites were evaluated on the basis of Weibull's theory. The fibers used were β-SiC and γ-Al2O3 monofilament composites was fabricated by coating Al on the fiber surface by the use of vacuum evaporation method. Average tensile strength of ceramic fibers showed the tendency to linearly decrease with increasing gauge length. Also, Weibull moduli of ceramic fibers were decreased with increasing gauge length, Weibull modulus of β-SiC was 3.5 for 6-50mm, 2.8 for 100-200mm. Weibull modulus of γ-Al2O3 was 6.5 for 20-50mm, 6 for 100mm. Fibers in monofilament retained their original as-produced strength to exposure temperature of 400℃. However, tensile strength of both monofilament composites approved to remarkably degrade due to interfacial reaction-induced flaws on the fiber surface after thermal exposure of 600℃. In this case, Weibull modulus of monofilament composites was 2.7 for β-SiC and 5.2 for γ-Al2O3 respectively.

  • PDF

Influence of Oxidation Inhibitor on Carbon-Carbon Composites: 5. Studies on Anti-oxidation Properties of the Composites (산화억제제 첨가에 의한 탄소/탄소 복합재료의 물성에 관한 연구: 5. 탄소/탄소 복합재료의 내산화성 연구)

  • 박수진;서민강;조민석;이재락
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.237-244
    • /
    • 2000
  • Phenolic resin used as a precursor of carbonized matrix for carbon-carbon composites was modified by addition of molybdenum disilicide (MoSi$_2$) in various concentrations of 0, 4, 12 and 20% by weight to improve the anti-oxidation properties of the composites. The green body was manufactured by a prepreg method and was submitted to carbonization up to 110$0^{\circ}C$. In this work, the oxidation behavior of carbon-carbon composites with MoSi$_2$ as an oxidation inhibitor was investigated at the temperature range of 600-100$0^{\circ}C$ in an air environment. The carbon-carbon composites with MoSi$_2$ showed a significantly improved oxidation resistance due to both the reduction of the porosity formation and the formation of mobile diffusion barrier for oxygen when compared to those without MoSi$_2$. Carbon active sites should be blocked, decreasing the oxidation rate of carbon. This is probably due to the effect of the inherent MoSi$_2$ properties, resulted from a formation of the protective layer against oxygen attack in the composites studied.

  • PDF

Fabrication Process and Impact Characteristic Analysis of Metal Matrix Composite for Electronic Packaging Application (전자패키징용 금속복합재료의 제조공정 해석 및 충격특성평가)

  • 정성욱;정창규;남현욱;한경섭
    • Composites Research
    • /
    • v.15 no.1
    • /
    • pp.32-40
    • /
    • 2002
  • This study developed fabrication process of $SiC_p/Al$ metal matrix composites as electronic packaging materials by squeeze casting method. The $SiC_p$ preform were fabricated in newly designed preform mold using about 0.8 % of inorganic binder(SiO$_2$) and 5 vol.% of $Al_2O_3$fiber. To infiltrate the molten metal into the preform, fabrication condition such as the temperature and the pressure were selected. Applying the fabrication conditions, heat transfer analysis were preformed using finite element method and thus analyzed the temperature distribution and cooling characteristic during the squeeze casting. For the fabricated composites, impact toughness and thermal expansion coefficient were measured. The metal matrix composites developed in this study have 0.2~0.3 J impact toughness, $8~10 ppm/^{\circ}C$ thermal expansion coefficient and $2.9~3.0g/cm^3$density which is appropriate properties for electronic packaging application.

진공 플라즈마 용사 코팅 조건에 따른 초고온 세라믹 코팅의 미세구조

  • Yu, Yeon-U;Jeon, Min-Gwang;Nam, Uk-Hui;Byeon, Eung-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.135-135
    • /
    • 2016
  • 차세대 가스터빈 엔진 및 초음속 항공기 내 고온부의 온도가 증가함에 따라, 기존의 초내열합금 기반 소재를 사용하기 어려워지고 있다. 초고온 세라믹스는 높은 기계적 물성, 화학적 안정성 등 우수한 고온 특성을 가지고 있어 기존의 초고온 소재를 대체 할 수 있는 물질로 부상되고 있다. 하지만 기존의 금속 기반 소재 대비 높은 밀도로 인하여 초고온 세라믹 단일체를 비행체 부품에 적용하기에는 어려움이 있다. 이에 초고온 세라믹스와 탄소섬유를 포함하는 세라믹 복합체(Ceramic Matrix Composite, CMC)를 제작하여 동등한 기계적 물성을 보이면서 무게를 감소시키는 연구들이 진행 중에 있다. 초고온 세라믹스가 함침 된 세라믹 복합체의 경우 우수한 내삭마, 내산화 특성을 보이지만, 장시간 고온에 노출되어 탄소 섬유가 드러나게 되면 급격한 산화로 인해 소재 특성의 열화가 진행되는 단점을 가지고 있다. 따라서, 탄소 섬유가 드러나지 않도록 복합체 표면에 코팅층을 형성하여 세라믹 복합체 모재를 보호하는 방법이 활발히 연구되고 있다. 본 연구에서는 진공 플라즈마 용사 공정을 이용하여 다양한 공정조건 하에서 초고온 세라믹 코팅층을 형성하였다. 수십 마이크론 크기 분포를 갖는 HfC 분말을 Ar 유송 가스를 이용하여 플라즈마 화염 내부로 투입하였다. 플라즈마 화염 가스는 Ar 과 H2를 혼합하여 구성되었으며, 분위기 가스로는 N2를 사용하였다. 코팅에 사용된 모재로는 ZrB2 단일체와 SiC가 미량 포함된 HfC 단일체를 사용하였다. 다양한 공정 조건하에서 형성된 HfC 코팅층의 두께, 미세 조직구조를 SEM을 이용하여 관찰하였으며, XRD를 이용하여 형성된 HfC 코팅층의 결정구조를 분석하였다.

  • PDF

Multiscale Finite Element Analysis of Needle-Punched C/SiC Composites through Subcell Modeling (서브셀 모델링을 통한 니들 펀치 C/SiC 복합재료의 멀티스케일 유한요소해석)

  • Lim, Hyoung Jun;Choi, Ho-Il;Lee, Min-Jung;Yun, Gun Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.51-58
    • /
    • 2021
  • In this paper, a multi-scale finite element (FE) modeling methodology for three-dimensional (3D) needle-punched (NP) C/SiC with a complex microstructure is presented. The variations of the material properties induced by the needle-punching process and complex geometrical features could pose challenges when estimating the material behavior. For considering these features of composites, a 3D microscopic FE approach is introduced based on micro-CT technology to produce a 3D high fidelity FE model. The image processing techniques of micro-CT are utilized to generate discrete-gray images and reconstruct the high fidelity model. Furthermore, a subcell modeling technique is developed for the 3D NP C/SiC based on the high fidelity FE model to expand to the macro-scale structural problem. A numerical homogenization approach under periodic boundary conditions (PBCs) is employed to estimate the equivalent behavior of the high fidelity model and effective properties of subcell components, considering geometry continuity effects. For verification, proposed models compare excellently with experimental results for the mechanical behavior of tensile, shear, and bending under static loading conditions.

Study on the Polymer Gel Fiber of Alkali Resistance Zirconia System for GRC (GRC 제조용 내알칼리성 지르코니아계 고분자 겔섬유에 관한 연구)

  • 신대용;한상목;김경남;강위수
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.8
    • /
    • pp.934-940
    • /
    • 1994
  • Fibers of ZrO2-SiO2 system were prepared from the hydrolysis and condensation of Si(OC2H5)4 and Zr(OnC3H7)4 with different H2O/alkoxide molar ratios. It was found that fibers could be drawn in the viscosity range of 1~100 poise from HCl catalyzed solutions with lower water contents of the mole ratio H2O/alkoxide, r 2. The fibrous gels were converted into the corresponding oxide glass fibers by heating at 80$0^{\circ}C$. Mechanical test was performed on E, A and 20ZrO2-80SiO2 glass fibers reinforced cement in order to investigate the flexural strength. The flexural strength value of 20ZrO2-80SiO2 glass fibers reinforced cement was greater than those of E and A. The chemical durability of the fibers in alkaline solutions increased with ZrO2 content. The weight loss due to the corrosion by 2N-NaOH solutions at $25^{\circ}C$ for 160 hours was about 0.31$\times$10-2 mg/dm2 for the 20ZrO2-80SiO2 glass fibers, which was superior to that of Vycor glass.

  • PDF

Influence of Oxidation Inhibitor on Carbon-Carbon Composites: 9. Studies on Impact Properties of the Composites (산화억제제 첨가에 의한 탄소/탄소 복합재료의 물성에 관한 연구: 9. 복합재료의 충격특성에 관한 연구)

  • 박수진;서민강;이재락
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.41-48
    • /
    • 2003
  • In this work, the effect of molybdenum disilicide(MoSi$_2$) content on the impact properties of carbon-carbon composites(C/C composites) was investigated in the presence of MoSi$_2$. The content of MoSi$_2$ was varied in 0, 4, 12 and 20 wt% on the basis of resin matrix for anti-oxidation properties of the composites under high temperature. As a result, the composites made with MoSi$_2$ resulted in an increase of interfacial adhesion between fibers and matrix, which could improve the impact properties of the composites. Especially, 12 wt% Mosi$_2$ composites showed the highest impact properties in the present system. This was probably due to the existence of brittle-to-ductile transition(BDT) properties of MoSi$_2$ in the vicinity of 90$0^{\circ}C$, resulting from increasing the interfacial adhesion force among fibers, filler, and matrix in the composites.

Analysis of Temperature dependent Thermal Expansion Behavior of $\textrm{SiC}_\textrm{p}/\textrm{Al}_2\textrm{O}_{3f}/\textrm{Al}$ Composites ($\textrm{SiC}_\textrm{p}/\textrm{Al}_2\textrm{O}_{3f}/\textrm{Al}$ 복합재료의 온도에 따른 열팽창 특성 해석)

  • 정성욱;남현욱;정창규;한경섭
    • Composites Research
    • /
    • v.16 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • This study developed SiC$_{p}$/A1$_2$O$_3$$_{f}$/Al composites for electronic packaging to which reinforcements were added with the volume fractions of 49%, 56% and 63% by the squeeze casting method. 0.8 wt. % of the inorganic binder as well as the A1$_2$O$_3$ fiber and SiC Particles with the volume fraction of 1:10 were added to the composites, which were produced in the newly designed mold. For the produced SiC/Al composites, the CTEs (coefficients of thermal expansion) were measured from 30 to 300 and compared with the FEM numerical simulation to analyze the temperature dependent properties. The experiment showed the CTEs of SiC$_{p}$/A1$_2$O$_3$$_{f}$/Al composites that were intermediate values of those of Rule of Mixture and Turner's Model. The CTEs were close to Turner's Model in the room temperature and approached the Rule of Mixture as the temperature increases. These properties analyzed from the difference of the average stress acting between the matrix and the reinforcements proposed in this study.