• 제목/요약/키워드: SiC/SiC composites

검색결과 738건 처리시간 0.03초

Cutting Performance of Si$_3$N$_4$ Based SiC Ceramic Cutting Tools

  • Kwon, Won-Tae;Kim, Young-Wook
    • Journal of Mechanical Science and Technology
    • /
    • 제18권3호
    • /
    • pp.388-394
    • /
    • 2004
  • Composites of Si$_3$N$_4$-SiC containing up to 30 wt% of dispersed SiC particles were fabricated via hot-pressing with an oxynitride glass. To determine the effect of sintering time and SiC content on the mechanical properties and the cutting performance, the composites with fixed 8hr-sintering time and 20 wt% SiC content were fabricated and tested. Fracture toughness of the composites increased with increasing sintering time, while the hardness increased as the SiC content increased up to 20 wt%. The hardness of the composites was relatively independent of the grain size and the sintered density. For machining heat-treated AISI4140, the insert with 20 wt% SiC sintered for 8hr showed the longest tool life while the insert with 20 wt% SiC sintered for 12hr showed the longest tool life for machining gray cast iron. An effort was made to relate the mechanical properties, such as hardness, fracture toughness and wear resistance coefficient with the tool life. However, no apparent relationship was found between them. It may be stated that tool life is affected by not only the mechanical properties but also other properties such as surface roughness, density, grian size and the number of the inherent defects in the inserts.

무가압 침투법에 의해 제조된 $Al-5Mg-X(Si,Cu,Ti)/SiC_p$ 복합재료의 조직 및 마멸특성 (Microstructure and Wear Property of $Al-5Mg-X(Si,Cu,Ti)/SiC_p$ Composites Fabricated by Pressureless Infiltration Method)

  • 우기도;김석원;안행근;정진호
    • 한국주조공학회지
    • /
    • 제20권4호
    • /
    • pp.254-259
    • /
    • 2000
  • Metal matrix composites(MMCs) reinforced with hard particles have many potential application in aerospace structures, auto parts, semiconductor package, heat resistant panels, wear resistant materials and so on. In this work, the effect of SiC partioel sizes(50 and 100 ${\mu}m$) and additional elements such as Si, Cu and Ti on the microstructure and the wear property of $Al-5Mg-X(Si,Cu,Ti)/SiC_p$ composites produced by pressureless infiltration method have been investigated using optical microscopy, scanning eletron microcopy(SEM) with EDS(energy dispersive spectrometry), hardness test, X-ray diffractometer(XRD) and wear test. In present study, the sound $Al-5Mg-X(Si,Cu,Ti)/SiC_p$(50 and 100 ${\mu}m$) composites were fabricated by pressureless infiltration method. The $Al-5Mg-0.3Si-O.1Cu-O.1Ti/SiC_p$ composite with $50 {\mu}m$ size of SiC particle has higher hardness and better wear property than any other composite with $100{\mu}m$ size of SiC particle produced by pressureless infiltration method. The hardness and wear property of $Al-5Mg/SiC_p$(50 and 100 ${\mu}m$) composites were enhanced by the addition of Si, Cu and Ti in Al-5%Mg matrix alloy.

  • PDF

Preparation of Silicon Nitride-silicon Carbide Composites from Abrasive SiC Powders

  • Kasuriya, S.;Thavorniti, P.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1091-1092
    • /
    • 2006
  • Silicon nitride - silicon carbide composite was developed by using an abrasive SiC powders as a raw material. The composites were prepared by mixing abrasive SiC powder with silicon, pressing and sintering at $1400^{\circ}C$ under nitrogen atmosphere in atmosphere controlled vacuum furnace. The proportion of silicon in the initial mixtures varied from 20 to 50 wt%. After sintering, crystalline phases and microstructure were characterized. All composites consisted of ${\alpha}-Si_3N_4$ and ${\beta}-Si_3N_4$ as the bonding phases in SiC matrix. Their physical and mechanical properties were also determined. It was found that the density of the obtained composites increased with an increase in the $Si_3N_4$ content formed in the reaction.

  • PDF

SiC 입자강화 Al-Si 복합재료의 내마멸성에 미치는 Cu , Mg의 영향 (Effects of Cu and Mg on Wear Properties of SiC Particulate Reinforced Al-Si Metal Matrix Composites)

  • 심상한;정용근;박익민
    • 한국주조공학회지
    • /
    • 제10권1호
    • /
    • pp.43-49
    • /
    • 1990
  • The influences of Cu and Mg addition on wear properties of SiC particulate reinforced Al-Si metal(alloy) matrix composites were investigated. Metal matrix composites were prepared by combination of compocasting and hot pressing techniques. The main results obtained are as follows : 1) The composite with Mg addition exhibits letter wear resistance than that with Cu addition. It is considered that Mg addition improved wettability of matal matrix composite by the strong segregation to the SiC / Al matrix interface. 2) After homogenization treatment, it was found that the interfacial segregation of Mg was predominant, while that of Cu was not detected. 3) The SiC / Al-11Si eutectic composite exhibits better wear resistance than the SiC / Al-6Si hypoeutectic composite does. 4) It seems that the increase in the amount of Mg addition affects on the uniform dispersion of SiC particulates, on the refinement of microstructure and on age hardening and these effects cause wear resistance improvement of composites.

  • PDF

용탕단조한 AC4A $Al/Al_2O_3+SiC_p$ 하이브리드 금속복합재료의 미세조직과 기계적 성질 (Microstructure of Squeeze Cast AC4A $Al/Al_2O_3+SiC_p$ Hybrid Metal Matrix Composite)

  • 김민수;조경목;박익민
    • 한국주조공학회지
    • /
    • 제14권3호
    • /
    • pp.258-266
    • /
    • 1994
  • AC4A $Al/Al_2O_3+SiC_p$ hybrid composites were fabricated by the squeeze infiltration technique. Effect of applied pressure, volume fraction of reinforcement($Al_2O_3$ and SiC) and SiC particle size($4.5{\mu}m$, $6.5{\mu}m$ and $9.3{\mu}m$) on the solidification microstructure of the hybrid composites were examined. Mechanical properties were estimated preliminarly by fractographic observation, hardness measurement and wear test. Results show that the microstructure of the hybrid composites were quite satisfactory, namely revealing relatively uniform distribution of reinforcements and refined matrix. Some aggregation of SiC particle caused by particle pushing was observed especially in the hybrid composites containg in fine particle($4.5{\mu}m$). Refined matrix was attributed to applied pressure and increased nucleation sites with addition of reinforcements. Fractured facet also revealed finer for the hybrid composites possibly due to refined matrix. Hardness and wear resistance increased with volume fraction of reinforcements. For hybrid composites with $9.3{\mu}m$ SiC, hardness was somewhat lower and wear resistance higher than other composites.

  • PDF

SiC입자와 Al-Ti합금 용탕간반응에 의한 in situ 생성 TiC입자강화 Al합금복합재료의 조직과 기계적특성 (Microstructure and Mechanical Properties of in situ TiCp/Al Composites Fabricated by the Interfacial Reaction between SiC Particles and Liquid Al-Ti Alloy)

  • 임석원;중전박도
    • 한국주조공학회지
    • /
    • 제17권2호
    • /
    • pp.170-179
    • /
    • 1997
  • A noble technique has been developed for fabricating in situ formed $TiC_p/Al$ composites. In this process, fairly stable TiC particles were in situ synthesized in liquid aluminum by the interfacial reaction between an Al-Ti melt and SiC, which is a comparatively unstable carbide from the view-point of thermodynamics. It is possible in the present process to generate TiC particles of nearly 1 ${\mu}m$ in diameter, even utilizing SiC of 14 ${\mu}m$ as raw material. However, the dispersion behavior of TiC particles in the matrix depends on the size of the raw material SiC. Decomposing finer SiC makes the dispersion of TiC particles more uniform and the mechanical properties of composites are improved accordingly. The structure of in situ composites and their mechanical properties are affected by the fabrication temperature and the stirring time. It has been found that the most suitable condition for fabrication should be applied depending on the size of the raw material, even if the same kinds of carbide are used. Furthermore, although Al-Ti-Si system intermetallic compounds are detected in a $TiC_p/Al-Si$ composite which is fabricated by conventional melt-stirrng method, these compounds can not be observed in a $TiC_p/Al-Si$ composite made by this in situ production method. Hence the mechanical properties of the in situ $TiC_p/Al-Si$ composite are superior to those of the conventional $TiC_p/Al-Si$ composites.

  • PDF

분말야금방법으로 제조된 2XXX Al-${SiC}_{p}$ 복합재료의 미세조직과 기계적 성질 (Microstructure and Mechanical Properties of P/M Processed 2XXX Al-${SiC}_{p}$ Composites)

  • 심기삼
    • 한국분말재료학회지
    • /
    • 제4권1호
    • /
    • pp.26-41
    • /
    • 1997
  • The powder metallurgy (P/M) processed 2009 and 2124 Al composites reinforced with SiC particulates were studied by focusing on the effect of consolidation temperature on the microstructural and mechanical Properties. The mechanical properties such as tensile properties and microhardness of the second phases were analysed in relation to the microstructures observed by a SEM and an optical microscope. The in situ fracture process study using SEM showed that the grain refinement and the removal of manganese-containing particles often observed in the 2124 Al-${SiC}_{p}$ composites were important for the improvement of the mechanical properties. This study offers an optimum consolidation temperature for the control of the manganese-containing particles in the 2124 Al-${SiC}_{p}$ composites that yields mechanical properties higher than those of the 2009 Al-${SiC}_{p}$ composites.

  • PDF

고강도 $Si_3N_4/SiC$ 구조세라믹스에 관한 연구 (High Strength $Si_3N_4/SiC$ Structural Ceramics)

  • 김병수;김인술;장윤식;박홍채;오기동
    • 한국세라믹학회지
    • /
    • 제30권12호
    • /
    • pp.999-1006
    • /
    • 1993
  • Si3N4(p)-SiC(p) composites were prepared by gas pressure sintering at 190$0^{\circ}C$ for 1 hour. $\alpha$-SiC with average particle size of 0.48${\mu}{\textrm}{m}$ were dispersed from zero to 50vol% in $\alpha$-Si3N4 with average particle size of 0.5${\mu}{\textrm}{m}$. Y2O3-Al2O3 system was used as sintering aids. When 10vol% of SiC was added to Si3N4, optimum mechanical properties were observed; relative density of 98.8%, flextural strength of 930MPa, fracture toughness of 5.9MPa.m1/2 and hardness value of 1429kg/$\textrm{mm}^2$. Grain growth of $\beta$-Si3N4 was inhibited as the amount of added SiC was increased. SiC particles were found inside the $\beta$-Si3N4 intragrains in case of 10, 20 and 30vol%SiC added composites.

  • PDF

무가압 침투에 의하여 제조된 Al-5Mg-X(Si, Cu, Ti)/SiCp 복합재료의 시효 및 마멸특성에 관한 연구 (A Study on Aging and Wear Behaviors of Al-5Mg-X(Si, Cu, Ti)/SiCp Composites Fabricated by Pressureless Infiltration Method)

  • 우기도;김석원;나홍석;문호정
    • 한국주조공학회지
    • /
    • 제20권5호
    • /
    • pp.300-306
    • /
    • 2000
  • The objective of this work was to investigate the effects of SiC particle size(50, 100 ${\mu}m$) and additional elements such as Si, Cu and Ti on aging behavior in Al-5Mg-X(Si,Cu,Ti)/SiCp composites fabricated by pressureless infiltration method using hardness and wear test, scanning electron microscopy(SEM) and differential scanning calorimetry(DSC). The peak aging time in Al-5Mg-X(Si, Cu, Ti)/SiCp(50, 100 ${\mu}m$) composites is shorter than Al-5Mg-0.3Si alloy.The peak aging time of 50 ${\mu}m$ SiC particle reinforced Al-5Mg-X(Si,Cu,Ti) composites is shorter than those of 100 ${\mu}m$ SiC particle reinforced of Al-5Mg-X(Si,Cu,Ti) composites. The Al-5Mg-0.3Si-0.1Cu-0.1Ti/SiCp(50 ${\mu}m$) composites aged at $180^{\circ}C$ has higher hardness and better wear resistance than any other aged composite.The aging effect is promoted by the addition of Si and Cu in Al-5Mg/SiCp composites, so the wear resistance of Al-5Mg/SiCp composites with Si and Cu elements is enhanced by the aging treatment.

  • PDF

액상가압공정을 이용한 CNF/Mg 복합재료의 제조 및 특성평가 (Fabrication and Characterization of CNFs/Magnesium Composites Prepared by Liquid Pressing Process)

  • 김희봉;이상복;이진우;이상관;김양도
    • Composites Research
    • /
    • 제25권4호
    • /
    • pp.93-97
    • /
    • 2012
  • 본 연구에서는 액상가압공정을 이용하여 탄소나노섬유(carbon nano fiber, CNF)를 강화재로 하는 AZ91 마그네슘 복합재를 제조하였다. CNF의 분산성 및 마그네슘 합금 용탕과의 젖음성을 향상시키고자 CNF를 마이크로 크기의 실리콘 카바이드 입자(silicon carbide particle, $SiC_p$)와 혼합하였다. 또한, CNF와 $SiC_p$의 혼합분말에 무전해도금법으로 니켈을 코팅하였다. 액상가압공정에서 AZ91 용탕은 무처리된 CNF, CNF와 $SiC_p$의 혼합분말(CNF+$SiC_p$), 니켈 코팅된 CNF와 $SiC_p$의 복합분말((CNF+$SiC_p$)/Ni)과 같이 세 종류의 강화재로 정수압에 의해 함침하여 복합재를 제조하였다. 무처리된 CNF 강화 복합재료에서는 일부 CNF 응집체가 관찰되었으나 CNF+$SiC_p$ 및 (CNF+$SiC_p$)/Ni 강화 복합재에서는 CNF가 기지재 내에 균일하게 분산되었음을 확인하였다. 압축시험결과, CNF+$SiC_p$ 및 (CNF+$SiC_p$)/Ni 강화 복합재의 압축강도가 무처리된 CNF 강화 복합재보다 각각 38%와 28% 향상되었다.