• Title/Summary/Keyword: SiC/SiC Ceramics

Search Result 546, Processing Time 0.024 seconds

Tribological Behavior of Silicon Carbide Ceramics - A Review

  • Sharma, Sandan Kumar;Kumar, B. Venkata Manoj;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.581-596
    • /
    • 2016
  • A comprehensive review on sliding and solid particle erosion wear characteristics of silicon carbide (SiC) ceramics and SiC composites is provided. Sliding or erosion wear behavior of ceramics is dependent on various material characteristics as well as test parameters. Effects of microstructural and mechanical properties of SiC ceramics are particularly focused to understand tribological performance of SiC ceramics. Results obtained between varieties of pairs of SiC ceramics indicate complexity in understanding dominant mechanisms of material removal. Wear mechanisms during sliding are mainly divided in two groups as mechanical and tribochemical. In solid particle erosion conditions, wear mechanisms of SiC ceramics are explained by elastic-plastic deformation controlled micro-fracture on the surface followed by radial-lateral crack propagation beneath the plastic zone.

Effect of Si:C Ratio on Porosity and Flexural Strength of Porous Self-Bonded Silicon Carbide Ceramics (Si:C Ratio가 다공질 Self-Bonded SiC 세라믹스의 기공율과 곡강도에 미치는 영향)

  • Lim, Kwang-Young;Kim, Young-Wook;Woo, Sang-Kuk;Han, In-Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.5
    • /
    • pp.285-289
    • /
    • 2008
  • Porous self-bonded silicon carbide (SiC) ceramics were fabricated at temperatures ranging from 1750 to $1850^{\circ}C$ using SiC, silicon (Si), and carbon (C) powders as starting materials. The effect of the Si:C ratio on porosity and strength was investigated as a function of sintering temperature. It was possible to produce self-bonded SiC ceramics with porosities ranging from 36% to 43%. The porous ceramics showed a maximal porosity when the Si:C ratio was 2:1 regardless of the sintering temperature. In contrast, the maximum strength was obtained when the ratio was 5:1.

Cutting Characteristics of SiC-based Ceramic Cutting Tools Part 1: Microstructure and Mechanical Properties of SiC-based Ceramic Cutting Tools (SiC계 세라믹 절삭공구의 절삭특성 평가 Part 1: SiC계 절삭공구의 미세구조와 기계적 특성)

  • Park, June-Seuk;Kim, Kyeug-Jae;Shim, Wan-Hee;Kwon, Won-Tae;Kim, Young-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.82-88
    • /
    • 2001
  • In order to fulfil the requirements of the various performance profiles of ceramic cutting tools, six different SiC-based ceramics have been fabricated by hot-pressing (SiC--${Si}_3 {N}_4$composites) or by hot-pressing and subsequent annealing (monolithic SiC and SiC-TiC composites). Correlation between the annealing time and the corresponding microstructure and the mechanical properties of resulting ceramics have been investigated. The grain size of both ${Si}_3 {N}_4$and SiC in SiC-${Si}_3 {N}_4$composites increased with the annealing time. Monolithic SiC has the highest hardness, SiC-TiC composite the highest toughness, and the SiC-${Si}_3 {N}_4$composite the highest strength among the ceramics investigated. The hardness of SiC-${Si}_3 {N}_4$composites was relatively independent of the grain size, but dependent on the sintered density. The cutting performance of the newly developed SiC-based ceramic cutting tools will be described in Part 2 of this paper.

  • PDF

Fabrication of Porous SiC Ceramics by Partial Sintering and their Properties (부분소결공정에 의한 다공질 탄화규소 세라믹스의 제조 및 특성)

  • 김신한;김영욱;윤중열;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.541-547
    • /
    • 2004
  • Addition of large particles restrains densification by small particles in mixed particle systems. In the present study, large SiC whiskers or particles were introduced into small particles for restraining densification and the mixtures were sintered using yttrium aluminum garnet (Y$_3$A1$\sub$5/O$\sub$12/, YAG) as a sintering additive. By controlling the content of large SiC whiskers or particles and the applied pressure during sintering, porous SiC ceramics, with a porosity ranging from 0.3% to 39%, were fabricated. Porosity increased with increasing the content of restraining materials. SiC whiskers were more effective than large SiC partcles for restraining densification. Permeability of the porous SiC ceramics increased with increasing the porosity. Flexural strength decreased with increasing porosity. A noticeable increase in strain to failure was observed in the porous ceramics with a porosity ranging from 18% to 39%.

Sintering Characteristics of Si/SiC Mixtures from Si Waste of Solar Cell Industry (태양광(太陽光) 산업(産業)에서 발생(發生)하는 Si/SiC 혼합물(混合物)의 소결특성(燒結特性) 연구(硏究))

  • Kwon, Woo Teck;Kim, Soo Ryong;Kim, Younghee;Lee, Yoon Joo;Kim, Jong Il;Lee, Hyun Jae;Oh, Sea Cheon
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.28-35
    • /
    • 2013
  • The recycling of the Si/SiC mixture sludge obtained from solar cell industry is very significant, environmentally and economically. The sintering characteristics of Si/SiC mixture sludge was studied for the purpose of recycling. In this study, to understand sintering behavior, SiC content in the Si/SiC mixture was controlled using an air separator. Various Si/SiC mixtures having different SiC contents were sintered using carbon black, clay and aluminum hydroxide as sintering aids. Physical properties of Si/SiC mixture and sintered bodies have been characterized using SEM, XRD, particle size analyzer and apparent density measurement. SEM and particle size analysis result confirmed that the fine particles less than 1 ${\mu}m$ decreased or removed more effectively through the air separator in the case of 95% SiC sample compared than the case of 75% SiC sample or original SiC sample. Further, with addition of the Aluminum Hydroxide, ${\beta}$-cristobalite phase gradually decreased while mullite phase gradually increased. The addition of the carbon black improved the sintering characteristics.

Possible Strategies for Microstructure Control of Liquid-Phase-Sintered Silicon Carbide Ceramics

  • Chun, Yong-Seong;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.542-547
    • /
    • 2005
  • Keys to the attainment of tailored properties in SiC ceramics are microstructure control and judicious selection of the sintering additives. In this study, three different strategies for controlling microstructure of liquid-phase-sintered SiC ceramics (LPS-SiC) have been suggested: control of the initial $\alpha-SiC$ content in the starting powder, a seeding technique, and a post-sintering heat treatment. The strategies suggested offer substantial flexibility for producing toughened SiC ceramics whereby grain size, grain size distribution, and aspect ratio can be effectively controlled. The present results suggest that the proposed strategies are suitable for the manufacture of toughened SiC ceramics with improved toughness.

Properties of Electrical Discharge Machinable $SiC-TiB_2$ Composites

  • Kim, Young-Wook;Park, Heon-Jin;Lee, June-Gunn;Lee, Soo W.;Chung, Soon-Kil
    • The Korean Journal of Ceramics
    • /
    • v.1 no.3
    • /
    • pp.125-130
    • /
    • 1995
  • Electrical discharge machinable $SiC-TiB_2$ composites were fabricated by hot-pressing. Their mechanical and electrical properties were determined as a function of $TiB_2$ content. The addition of $TiB_2$ to SiC matrix increased the strength and toughness and decreased electrical resistivity. The flexural strength and fracture toughness of SiC-40 vol% $TiB_2$ composited were approximately 50% higher than those of monolithic SiC ceramics. Microstructural analysis showed that the toughening was mainly due to the crack deflection, with some possible contribution from crack branching or microcracking.

  • PDF

Variation of Yield and Oxygen Content of SiC-Based Ceramics with the Conversion Processes of PCS (PCS의 전환공정에 따른 SiC세라믹스 수율 및 산소 함량 변화)

  • Kim, Joung-Il;Kim, Weon-Ju;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.188-192
    • /
    • 2005
  • The conversions to SiC-based ceramics of a polycarbosilane (PCS) with and without oxidation curing were carried out. A yield and an oxygen content of conversed SiC-based ceramics were evaluated. The weight losses of conversed SiC-based ceramics by both processes analyzed to estimate the high temperature stability after heat treatment at high temperature in vacuum. The yield of SiC­based ceramics after oxidation curing was higher than that without curing process. However, the weight loss of SiC-based ceramics with oxidation curing was larger than that without curing process after heat treatment.

Machinable SiC Ceramics with Addition of Al2TiO5 (Al2TiO5가 첨가된 쾌삭(快削) SiC 세라믹스)

  • Kim, Il Soo;Park, Jeong Hyun;Lee, Won Jae;Lee, Kang Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.372-377
    • /
    • 2013
  • Machinable SiC ceramics are prepared with the addition of $Al_2TiO_5$. Ready-to-press SiC and $Al_2TiO_5$ powders are mixed and pressureless sintered at $1750^{\circ}C$ and $1850^{\circ}C$ for 1 h. The weight ratios of the SiC and $Al_2TiO_5$ powders are 100 : 0, 100 : 10, and 100 : 20. After sintering, only SiC peaks are detected in the X-ray diffraction analyses. The density, strength, and grain size of the SiC increase with increases in the $Al_2TiO_5$ content and sintering temperature. The $Al_2TiO_5$-doped specimens are easy to micro-hole machine. Based on the density and strength data, the ceramics sintered at $1850^{\circ}C$ can be used as machinable ceramics.

Mechanical and Tribological Properties of Si-SiC-Graphite Composites (Si-SiC-Graphite 복합재료의 기계적 물성과 마찰 마모 특성)

  • 김인섭;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.6
    • /
    • pp.643-652
    • /
    • 1995
  • Si-SiC-graphite composites were developed by incorporating solid lubricant graphite into Si-SiC, in the light of improving tribological properties of Si-SiC ceramics. Si-SiC-graphite composites were fabricated by infilterating silicon melt into the mixture of α-SiC, carbon black and graphite powder at 1750℃ under 3 Torr. The particle size of graphite was in the range of 150 to 500㎛, and the loading content of graphite was 0, 20, 25, 30, 35 vol% in the mixture of α-SiC and carbon black. The mechanical and tribological properties of this composites were studied. The density, hardness, flexural strength, compressive strength and Young's modulus were decreased with increasing of graphite content. An additiion of solid-lubricant graphite up to 30 vol% has improved tribological properties of Si-SiC ceramics without considerable degradation of mechanical properties.

  • PDF