• Title/Summary/Keyword: SiC/SiC Ceramics

Search Result 546, Processing Time 0.023 seconds

Processing of Silica-Bonded Silicon Carbide Ceramics

  • Chun, Yong-Seong;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.6 s.289
    • /
    • pp.327-332
    • /
    • 2006
  • The effect of the processing parameters on the sintered density and strength of silica-bonded SiC (SBSC) ceramics was investigated for three types of batches with different particle sizes. The SBSC ceramics were fabricated by an oxidation-bonding process. The process involves the sintering of powder compacts in air so that the SiC particles bond to each other by oxidation-derived $SiO_2$ glass or cristobalite. A finding of this study was that a higher flexural strength was obtained when the starting powder was smaller. When a ${\sim}0.3_{-{\mu}m}$ SiC powder was used as a starting powder, a high strength of $257{\pm}42\;MPa$ was achieved at a relative density of ${\sim}80%$.

Effect of Template Content on Microstructure and Flexural Strength of Porous Mullite-Bonded Silicon Carbide Ceramics (기공형성제 함량이 다공질 Mullite-Bonded SiC 세라믹스의 미세구조와 강도에 미치는 영향)

  • Choi, Young-Hoon;Kim, Young-Wook;Woo, Sang-Kuk;Han, In-Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.509-514
    • /
    • 2010
  • Porous mullite-bonded SiC (MBSC) ceramics were fabricated at temperatures ranging from 1400 to $1500^{\circ}C$ for 2 h using silicon carbide (SiC), alumina ($Al_2O_3$), strontium oxide (SrO), and poly (methyl methacrylate-coethylene glycol dimethacrylate) (PMMA) microbeads. The effect of template content on porosity, pore morphology, and flexural strength were investigated. The porosity increased with increasing the template content at the same sintering temperature. The flexural strength showed maximum after sintering at $1450^{\circ}C$/2 h for all specimens due to small pores and dense strut. By controlling the template content and sintering temperature, it was possible to produce porous MBSC ceramics with porosities ranging from 30% to 54%. A maximum flexural strength of ~51MPa was obtained at 30% porosity when no template were used and specimens sintered at $1450^{\circ}C$/2 h.

Microstructure and Mechanical Properties of the $Al_2O_3-SiC$ Ceramics Produced by Melt Oxidation (용융산화법으로 제조한 $Al_2O_3-SiC$ 세라믹스의 미세구조와 기계적 성질)

  • ;H. W. Hennicke
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.10
    • /
    • pp.1169-1175
    • /
    • 1994
  • Five Al2O3/SiC/metal composites with four different particle sizes of green SiC abrasive grains are grown by the directed oxidation of an commercially available Al-alloy. Oxidation was conducted in air at 100$0^{\circ}C$, 96 hours long. Slip casted SiC-fillers were placed on the alloy or SiC powder deposited up to the required layer thickness. Their microstructures are described and measurements of density, elastic constants, frexural strength, fracture toughness and work of fracture are reported. The results are compared with those of commercial dense sintered Al2O3. The properties of produced materials have a strong relationship to not only the properties of Al2O3, SiC, Al and Si but also to the phase share and phase distribution. The composite materials are dense (0.5% porosity), tough (KIC = 3.4~6.4 MPa{{{{ SQRT { m} }}), strong ({{{{ sigma }}B = 170~345 MPa) and reasonably shrinkage free producible. The reinforcements is attained mainly through the plastic deformation of ductile metal phase.

  • PDF

Effect of Yttria and Ceria on Mechanical Properties and Oxidation Behaviors of $\alpha$-Sialon Ceramics ($\alpha$-Sialon 세라믹스의 역학적 성질과 산화거동에 미치는 $Y_2O_3$$CeO_2$의 첨가영향)

  • 이은복;이홍림;조덕호;박원철
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.941-948
    • /
    • 1993
  • The powder mixture of Si3N4-AlN-Y2O3, Si3N4-AlN-CeO2 and Si3N4-AlN-Y2O3-CeO2 system was hot-pressed at 175$0^{\circ}C$ for 2h in N2 to prepare $\alpha$-Sialon ceramics. The mechanical property and oxidation behaviour of the prepared $\alpha$-Sialon ceramics were investigated. At 120$0^{\circ}C$, oxidation resistance was best for the Y2O3 added $\alpha$-Sialon ceramics and oxidation rate increased when the amount of CeO2 increased. But when the mixture of Y2O3 and CeO2 added $\alpha$-Sialon ceramics showed a good oxidation resistance. Fracture toughness of (Y2O3+CeO2) added $\alpha$-Sialon ceramics was higher than Y2O3 added $\alpha$-Sialon ceramics.

  • PDF

Microstructure and Cutting Characteristics of SiC-$Si_3N_4$ Ceramic Cutting Tool (SiC-$Si_3N_4$ 세라믹 절삭공구의 미세구조 및 절삭특성)

  • Gwon, Won-Tae;Kim, Yeong-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1944-1949
    • /
    • 2001
  • Four SiC-Si$_3$N$_4$ceramic cutting tools with different composition have been fabricated by hot-pressing. Correlations among the annealing time, the corresponding microstructure and the mechanical properties of resulting ceramics have been investigated. The fracture toughness and the grain size of both SiC and Si$_3$N$_4$in SiC-Si$_3$N$_4$composites increased with the annealing time. 1\`he hardness of SiC-Si$_3$N$_4$composites was relatively independent of the grain size and the sintered density. These ceramic cutting tools were tested under various cutting conditions and compared with the commercial Si$_3$N$_4$ceramic cutting tools. The experimental results were compared in terms of tool life and cutting force. The performance of SiC-Si$_3$N$_4$ceramic cutting tool shows the possibility to be a new ceramic tool.

Synthesis of Si3N4 from Domestic Silica-stone by Direct Nitriding Method (규석광으로부터 직접 질화법에 의한 질화규소의 합성)

  • Sohn Yong-Un;Joo Sung-Min;Chung Hun-Saeng
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.358-362
    • /
    • 2004
  • $Si_3$$N_4$ ceramics have been identified as one of the promising structural ceramics. This study has been carried out to investigate of the synthetic behaviors of $Si_3$$N_4$ derived from domestic silica-stone by direct nitriding method. The silicon nitridation reaction has been studied in the temperature range of $1300~1550^{\circ}C$. Below the $1400^{\circ}C$, the nitriding rate was measured to be 16%. For the temperatures higher than the $1400^{\circ}C$, $\beta$-$Si_3$$N_4$ phase was formed mainly, and the nitriding rate showed above 98%. With the increasing of sample weight of silicon powder, the nitriding rate and $\beta$-$Si_3$$N_4$ phase increased at $1400^{\circ}C$ for 2 hours. The shape and particle size of$ Si_3$$N_4$ powder synthesized at $1400^{\circ}C$ for 2 hours showed the irregular angular-type and 10 $\mu\textrm{m}$, respectively.

Mechanical Strength Values of Reaction-Bonded-Silicon-Carbide Tubes with Different Sample Size (튜브형상 반응소결 탄화규소 부품의 시편크기에 따른 강도평가 유용성 고찰)

  • Kim, Seongwon;Lee, Soyul;Oh, Yoon-Suk;Lee, Sung-Min;Han, Yoonsoo;Shin, Hyun-Ick;Kim, Youngseok
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.450-456
    • /
    • 2017
  • Reaction-bonded silicon carbide (RBSC) is a SiC-based composite ceramic fabricated by the infiltration of molten silicon into a skeleton of SiC particles and carbon, in order to manufacture a ceramic body with full density. RBSC has been widely used and studied for many years in the SiC field, because of its relatively low processing temperature for fabrication, easy use in forming components with a near-net shape, and high density, compared with other sintering methods for SiC. A radiant tube is one of the most commonly employed ceramics components when using RBSC materials in industrial fields. In this study, the mechanical strengths of commercial RBSC tubes with different sizes are evaluated using 3-point flexural and C-ring tests. The size scaling law is applied to the obtained mechanical strength values for specimens with different sizes. The discrepancy between the flexural and C-ring strengths is also discussed.

Microstructural Wear Mechanism of $Al_2O_3-5$ vol% SiC nanocomposite and $Si_3N_4$Ceramics

  • Riu, Doh-Hyung;Kim, Yoon-Ho;Lee, Soo-Wohn;Koichi Niihara
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.179-185
    • /
    • 2001
  • Through the observation of wear scar of two ceramic materials, microstructural wear mechanisms was investigated. As for the $Al_2O_3$-5 vol% SiC nanocomposite, the grain boundary fracture was suppressed by the presence of SiC nano-particles. The intragranular SiC particles have inhibited the extension of plastic deformation through the whole grain. Part of plastic deformation was accommodated around SiC particles, which made a cavity at the interface between SiC and matrix alumina. On the other hand, gas-pressure sintered silicon nitride showed extensive grain boundary fracture due to the thermal fatigue. The lamination of wear scar was initiated by the dissolution of grain boundary phase. These two extreme cases showed the importance of microstructures in wear behavior.

  • PDF

Effect of Microstructure on Evaluation of Fracture Toughness and Hardness of Cutting Tool Ceramics (절삭 공구용 세라믹의 소결조직에 따른 파괴인성과 경도의 평가)

  • 안동길;윤명진
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.170-177
    • /
    • 2000
  • Dense $Al_2$O$_3$-30%TiC and Si$_3$N$_4$ ceramic tool materials with various grain size were produced by sintering-HIP treatment and by gas-pressure sintering. The fracture toughness was measured by indentation fracture and indentation strength method for both ceramics with various grain size. The effect of the grain size on the fracture toughness was evaluated, and the correlation between fracture toughness and mechanical properties such as hardness, Young\`s modulus and flexural strength of these ceramic were also investigated. The highest fracture toughness of around 6.7 MPa.m(sup)1/2 was obtained in Si$_3$N$_4$ ceramics with grain size of 1.58${\mu}{\textrm}{m}$. With a larger grain size of $Al_2$O$_3$-30%TiC and Si$_3$N$_4$ ceramics, the fracture toughness was generally increased. The increased fracture toughness of these ceramic also improved the flexural strength although the hardness decreased considerably. Similar results were obtained in grain size and mechanical properties on both $Al_2$O$_3$-30%TiC and Si$_3$N$_4$ ceramic tool materials.

  • PDF