• Title/Summary/Keyword: Si-Cl-H

Search Result 316, Processing Time 0.028 seconds

Characterization and Methanol Biosynthesis of a Methane-Oxidizing Bacterium, Methylomonas sp. SM4, Isolated from Rice Paddy Field Soil (논에서 분리한 메탄산화세균 Methylomonas sp. SM4의 특성과 메탄올 생합성)

  • Park, Sung Min;Madhavaraj, Lavanya;Kim, Si Wouk
    • KSBB Journal
    • /
    • v.32 no.2
    • /
    • pp.124-132
    • /
    • 2017
  • A methane-oxidizing bacterium was isolated from rice paddy field soil around Jeollanam-do province, Korea, and characterized. The isolate was gram-negative, orange pigmented and short rod ($1.1-1.2{\times}1.6-1.9{\mu}m$). It was catalase and urease-negative but oxidase-positive. The strain utilized methane and methanol as sole carbon and energy sources. It had an ability to grow with an optimum pH 7.0 and an optimum growth temperature $30^{\circ}C$. The strain was resistant to antibiotic polymyxin B but sensitive to streptomycin, kanamycin, ampicillin, chloramphenicol and rifampicin. The isolate required copper for their growth with concentration range of $2-25{\mu}M$, with an optimum of $10{\mu}M$. Under optimal culture condition, specific cell growth rate and generation time were found to be $0.046hr^{-1}$ and 15.13 hr, respectively. Phylogenetic analysis based on 16S rDNA sequences indicated that the strain formed a tight phylogenetic lineage with Methylomonas koyamae with a value of 99.4% gene sequence homology. So, we named the isolate as Methylomonas sp. SM4. 8.6 mM methanol was accumulated in the reaction mixture containing 70 mM sodium formate and 40 mM $MgCl_2$ (MDH inhibitor) under atmosphere of methane:air (40:60) mixture for 24 hr at $30^{\circ}C$.

Burke-Schumann analysis of silica formation by hydrolysis in an external chemical vapor deposition process (외부 화학증착 공정에서의 가수분해반응으로 인한 실리카 생성에 대한 버크-슈만 해석)

  • Song, Chang-Geol;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1671-1678
    • /
    • 1996
  • In external chemical vapor deposition processes including VAD and OVD the distribution of flame-synthesized silica particles is determined by heat and mass transfer limitations to particle formation. Combustion gas flow velocities are such that the particle diffusion time scale is longer than that of gas flow convection in the zone of particle formation. The consequence of these effects is that the particles formed tend to remain along straight smooth flow stream lines. Silica particles are formed due to oxidation and hydrolysis. In the hydrolysis, the particles are formed in diffuse bands and particle formation thus requires the diffusion of SiCl$\_$4/ toward CH$\_$4//O$\_$2/ combustion zone to react with H$\_$2/O diffusing away from these same zones on the torch face. The conversion kinetics of hydrolysis is fast compared to diffusion and the rate of conversion is thus diffusion-limited. In the language of combustion, the hydrolysis occurs as a Burke-Schumann process. In selected conditions, reaction zone shape and temperature distributions predicted by the Burke-Schumann analysis are introduced and compared with experimental data available. The calculated centerline temperatures inside the reaction zone agree well with the data, but the calculated values outside the reaction zone are a little higher than the data since the analysis does not consider diffusion in the axial direction and mixing of the combustion products with ambient air. The temperatures along the radial direction agree with the data near the centerline, but gradually diverge from the data as the distance is away from the centerline. This is caused by the convection in the radial direction, which is not considered in the analysis. Spatial distribution of silica particles are affected by convection and diffusion, resulting in a Gaussian form in the radial direction.

Loess Dyeing of Soybean Fabrics (대두직물의 황토염색)

  • Lee, Sol;Lee, Shin-Hee
    • Fashion & Textile Research Journal
    • /
    • v.17 no.6
    • /
    • pp.1004-1012
    • /
    • 2015
  • The purpose of this study is to investigate the loess dyeability of soybean fabric using loess as colorants. Recent days, various textile products such as inner wears, sheets and interior goods are manufactured using materials dyed with loess emphasizing its improved metabolism, anti-bacterial, deodorizing properties, and far infrared ray emissions. Soybean fabric was dyed with loess solution according to concentration of loess, dyeing temperature and dyeing time. To improve washing fastness, soybean fabric and dyed soybean fabric with loess were mordanted by mordanting agents such as sodium chloride(NaCl), Acetic acid(CH3COOH) and Aluminium Potassium Sulfate(AlK(SO4)2·12H2O). Dyeability and color characteristics of dyed soybean fabric were obtained by CCM observation. Particle size distribution of loess, the dyeability(K/S) of soybean fabric, morphology and washing durability of loess dyed soybean fabric were investigated. The results obtained were as follows; Mean average diameter of loess was 1.08µm. The main components of loess used in this study were silicon dioxide(SiO2), aluminium oxide(Al2O3), and iron oxide(Fe2O3). The content of these three component was above 75 weight %. The dyeability of soybean fabric was increased gradually with increasing concentration of loess. The optimum dyeing temperature and dyeing time were 90℃ and 60minutes expectively. The fastness to washing according to concentration of loess and mordanting method indicated good grade result as more than 4 degree in all conditions.

Preparation and Unequivocal Identification of Chromophores-Substituted Carbosilane Dendrimers up to 7th Generations

  • Kim, Chung-Kyun;Kim, Hyo-Jung;Oh, Myeong-Jin;Hong, Jang-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.873-881
    • /
    • 2009
  • Bis(phenylethynyl)dimethylsilane is branched by the hydrosilation of the phenylethynyl group with dichloromethylsilane, and then the resulting chlorosilane is reacted with lithium phenylacetylide to give the $1^{st}$ generation. The same hydrosilation and alkynylation are repeated to obtain the $7^{th}$ generation. In addition peripheral Si-Cl moiety of the seven kind generation dendrimers are reacted with alcoholic moiety of 9-hydroxymethylanthracene and 2-(2-hydroxyphenyl)benzoxazole group in the presence of TMEDA. Then three kinds of carbosilane dendrimers are prepared from the $1^{st}$ to the $7^{th}$ generations, the $7^{th}$ generation of each dendrimer has 256 phenylethynyl, 256 9-anthracenylmethoxy, or 128 2-(2-phenoxy)benzoxazole groups. Each synthesized dendrimer is unequivocally characterized by $^1H\;and\;^{13}C\;NMR$, elemental analysis, MALDI-MS, GPC, and PL (photoluminescence). Characteristically PDI (Polydisperse Index) values of the dendrimers’ peak in GPC are in the range of $1.00{\sim}1.07$, which indicates that each generation of carbosilane is in unified distribution. PL spectra of phenylethynyl and 9- anthracenemethoxy group substituted dendrimers show no significant change with increasing the generation from the $1^{st}$ to the $7^{th}$. However, the PL spectra of 2-(2-phenoxy)benzoxazole group substituted dendrimers show a blue-shift trend with increasing the generation from the $1^{st}$ to the $7^{th}$.

The Effect of Boron Content and Deposition Temperature on the Microstructure and Mechanical Property of Ti-B-C Coating Prepared by Plasma-enhanced Chemical Vapor Deposition (PECVD법에 의해 증착된 Ti-B-C코팅막 내의 보론함량과 증착온도에 따른 미세구조 및 기계적 물성의 변화)

  • Ok, Jung-Tae;Song, Pung-Keun;Kim, Kwang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.3
    • /
    • pp.106-111
    • /
    • 2005
  • Ternary Ti-B-C coatings were synthesized on WC-Co and Si wafers substrates by a PECVD technique using a gaseous mixture of $TiCl_4,\;BCl_3,\;CH_4,\;Ar,\;and\; H_2$. The effects of deposition variables such as substrate temperature, gas ratio, $R_x=[BCl_3/(CH_4+BCl_3)]$ on the microstructure and mechanical properties of Ti-B-C coatings were investigated. From our instrumental analyses, the synthesized Ti-B-C coatings was confirmed to be composites consisting of nanocrystallites TiC, quasi-amorphous TiB2, and amorphous carbon at low boron content, on the contrary, nanocrystallites $TiB_2$, quasi-amorphous TiC, and amorphous carbon at relatively high boron content. The microhardness of the Ti-B-C coatings increased from $\~23 GPa$ of TiC to $\~38 GPa$ of $Ti_{0.33}B_{0.55}C_{0.11}$ coatings with increasing the boron content. The $Ti_{0.33}B_{0.55}C_{0.11}$ coatings showed lower average friction coefficient of 0.45, in addition, it showed relatively better wear behavior compared to other binary coatings of $TiB_2$ and TiC. The microstruture and microhardness value of Ti-B-C coatings were largely depend on the deposition temperature.

Corrosion Behavior Optimization by Nanocoating Layer for Low Carbon Steel in Acid and Salt Media

  • Ahmed S. Abbas;Bahaa Sami Mahdi;Haider H. Abbas;F.F. Sayyid;A.M. Mustafa;Iman Adnan Annon;Yasir Muhi Abdulsahib;A.M. Resen;M. M. Hanoon;Nareen Hafidh Obaeed
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.21-29
    • /
    • 2023
  • In this paper, a SiC nano electroless nickel plating layer with excellent corrosion resistance was fabricated using the Taguchi method. The electroless plated low carbon steel was subjected to tests to examine the influence of corrosive media, microhardness, and corrosion rate on the corrosion resistance of this alloy. Three different corrosive media (HCl, Na2SO4, and NaCl) at various temperatures (80, 90, and 100 ℃) were used, and at three different times (40, 80, and 120 min.) with a speed of stirring equal to 500 rpm. The results of microhardness were found from 134.276 HV to 278.578 HV at various conditions, while the corrosion rate results were obtained from 0.89643 mpy to 7.12571 mpy at different circumstances. Corrosion, and mechanical characteristics were explained using Taguchi design. Taguchi technique was used to account for all possible combinations of elements in order to conduct a complete study. Models that link the response and procedure parameters were developed using the results of these tests, and the analysis of variance was utilized to validate these models (ANOVA). For maximum efficiency, a function called "desirability" was applied to all responses at once.

Development of Environmental-friendly Cleaning Agents Utilizing Organic Acids for Removal of Scale on the Wall of Cleaning Beds and Distribution Reservoirs in the Waterworks (유기산을 이용한 상수도 정수장 및 배수지 벽면 스케일 세척용 친환경 세정제 개발)

  • Lee, Jae-Ryoung;Yoon, Hee-Keun;Bae, Jae-Heum;Shin, Hyun-Duk
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.272-279
    • /
    • 2012
  • In this study, an environmental-friendly cleaning agent utilizing organic acids and various additives has been developed and applied to the field for removal of scale deposited on the cleaning beds or distribution reservoirs of the waterworks. As an analytical result of scale on the cleaning beds, we found that it consists of mainly metallic oxides such as $SiO_2$, $Al_2O_3$, $Fe_2O_3$, and MnO. Malic acid, malonic acid, and citric acid showed relatively better solvency on $Al_2O_3$, $Fe_2O_3$, and MnO except $SiO_2$ among various organic acids. Mixed organic acid solutions of malic acid, malonic acid, and citric acid were prepared with certain weight ratios and their solvencies on mixed metal oxides of $Al_2O_3$, $Fe_2O_3$, and MnO were investigated. The experimental results showed that an 10% mixed organic acid solution prepared with weight ratio of malic acid : malonic acid : citric acid = 6 : 2 : 2 were found to have best scale solvency power of about 29%. The formulated cleaning agents with a small amount of nonionic surfactant showed much better solvency on mixed oxides than mixed organic solution alone. Especially, the formulated cleaning agent with 0.2 wt% LA-7 surfactant appeared to have best scale removal efficiency of about 35%. However, the formulated cleaning agent with disinfectants such as NaClO, $H_2O_2$ and $Ca(ClO)_2$ showed poor solvency on mixed oxides. It is inferred that surfactants are able to improve scale removal efficiency due to their capability of emulsification, and disinfectants cause to degrade scale solvency in water because of their oxidation. Based on these basic experimental results, formulated cleaning agents have been prepared with mixed organic acid solution, nonionic surfactants, and disinfectants and successfully applied to removal of scales on the cleaning beds and distribution reservoir at city D waterworks.

Potential Antitumor ${\alpha}$-methylene-${\gamma}$-butyrolactone-bearing nucleic acid bases. 2. synthesis of $5^I-Methyl-5^I$-[2-(5-substituted uracil-1-yl)ethyl]-$2^I-oxo-3^I$-methylenetetrahydrofurans

  • Kim, Jack-C.;Kim, Ji-A;Park, Jin-Il;Kim, Si-Hwan;Kim, Seon-Hee;Choi, Soon-Kyu;Park, Won-Woo
    • Archives of Pharmacal Research
    • /
    • v.20 no.3
    • /
    • pp.253-258
    • /
    • 1997
  • Ten, heretofore unreported, $ 5^I-methyl-5^I-[2-(5-substituted uracil-1-yl)ethyl)]-2^I-oxo-3^I$-methylenetetrahydrofurans (H, F, Cl, Br, I, $ CH_3$,$CF_3$,$CH_2CH_3$,$ CH=CH2$, SePh) (7a-j) were synthesized and evaluated against four cell lines (K-562, FM-3A, P-388 and U-937). For the preparation of ${\alpha}$-methylene-${\gamma}$-butyrolactone-linked to 5-substituted uracils (7a-j), the convenient Reformasky type reaction was employed which involves the treatment of ethyl ${\alpha}$-(bromomethyl)acrylate and zinc with the respective 1-(5-substituted uracil-1-yl)-3-butanone (6a-j). The 5-substituted uracil ketones (6a-j) were directly obtained by the respective Michael type reaction of vinyl methyl ketone with the $K_2CO_3$(or NaH)-treated 5-substituted uracils (5a-j) in the presence of acetic acid in the DMF solvent. The .alpha.-methylene-.gamma.-butyrolactone compounds showing the most significant antitumor activity are 7e, 7f, 7h and 7j (inhibitory concentration $(IC_50)$ ranging from 0.69 to $2.9 {\mu}g/ml$), while 7b, 7g and 7i have shown moderate to significant activity. The compounds 7a, 7c and 7d were found to be inactive. The synthetic intermediate compounds 6a-j were also screened and found marginal to moderate activity where compounds 6b and 6g showed significant activity $(IC_50:0.4~2.8 {\mu}g/ml)$.

  • PDF

Sources Apportionment Estimation of Ambient PM2.5 and Identification of Combustion Sources by Using Concentration Ratios of PAHs (대기 중 PM2.5의 오염기여도 추정 및 PAHs 농도비를 이용한 연소 오염원 확인)

  • Kim, Do-Kyun;Lee, Tae-Jung;Kim, Seong-Cheon;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.538-555
    • /
    • 2012
  • The purpose of this study was to understand $PM_{2.5}$ chemical characteristics on the Suwon/Yongin area and further to quantitatively estimate $PM_{2.5}$ source contributions. The $PM_{2.5}$ sampling was carried out by a high-volume air sampler at the Kyung Hee University-Global Campus from November, 2010 to October, 2011. The 40 chemical species were then analyzed by using ICP-AES(Ag, Ba, Cr, Cu, Fe, Mn, Ni, Pb, Si, Ti, V and Zn), IC ($Na^+$, $K^+$, $NH_4{^+}$, $Mg^{2+}$, $Ca^{2+}$, $NO_3{^-}$, ${SO_4}^{2-}$ and $Cl^-$), DRI/OGC (OC1, OC2, OC3, OC4, OP, EC1, EC2 and EC3) and GC-FID (acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, benzo[b]fluoranthene, benzo[a] pyrene, indeno[1,2,3-cd] pyrene, benzo[g,h,i]perylene and dibenzo[a,h,]anthracene). When applying PMF model after performing proper data treatment, a total of 10 sources was identified and their contributions were quantitatively estimated. The average contribution to $PM_{2.5}$ emitted from each source was determined as follows; 26.3% from secondary aerosol source, 15.5% from soil and road dust emission, 15.3% from vehicle emission, 15.3% from illegal biomass burning, 12.2% from incineration, 7.2% from oil combustion source, 4.9% from industrial related source, and finally 3.2% from coal combustion source. In this study we used the ratios of PAHs concentration as markers to double check whether the sources were reasonably classified or not. Finally we provided basic information on the major $PM_{2.5}$ sources in order to improve the air quality in the study area.

미세금형 가공을 위한 전기화학식각공정의 유한요소 해석 및 실험 결과 비교

  • Ryu, Heon-Yeol;Im, Hyeon-Seung;Jo, Si-Hyeong;Hwang, Byeong-Jun;Lee, Seong-Ho;Park, Jin-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.81.2-81.2
    • /
    • 2012
  • To fabricate a metal mold for injection molding, hot-embossing and imprinting process, mechanical machining, electro discharge machining (EDM), electrochemical machining (ECM), laser process and wet etching ($FeCl_3$ process) have been widely used. However it is hard to get precise structure with these processes. Electrochemical etching has been also employed to fabricate a micro structure in metal mold. A through mask electrochemical micro machining (TMEMM) is one of the electrochemical etching processes which can obtain finely precise structure. In this process, many parameters such as current density, process time, temperature of electrolyte and distance between electrodes should be controlled. Therefore, it is difficult to predict the result because it has low reliability and reproducibility. To improve it, we investigated this process numerically and experimentally. To search the relation between processing parameters and the results, we used finite element simulation and the commercial finite element method (FEM) software ANSYS was used to analyze the electric field. In this study, it was supposed that the anodic dissolution process is predicted depending on the current density which is one of major parameters with finite element method. In experiment, we used stainless steel (SS304) substrate with various sized square and circular array patterns as an anode and copper (Cu) plate as a cathode. A mixture of $H_2SO_4$, $H_3PO_4$ and DIW was used as an electrolyte. After electrochemical etching process, we compared the results of experiment and simulation. As a result, we got the current distribution in the electrolyte and line profile of current density of the patterns from simulation. And etching profile and surface morphologies were characterized by 3D-profiler(${\mu}$-surf, Nanofocus, Germany) and FE-SEM(S-4800, Hitachi, Japan) measurement. From comparison of these data, it was confirmed that current distribution and line profile of the patterns from simulation are similar to surface morphology and etching profile of the sample from the process, respectively. Then we concluded that current density is more concentrated at the edge of pattern and the depth of etched area is proportional to current density.

  • PDF