• Title/Summary/Keyword: Si sludge

Search Result 100, Processing Time 0.028 seconds

Synthesis of Iron-loaded Zeolites for Removal of Ammonium and Phosphate from Aqueous Solutions

  • Kim, Kwang Soo;Park, Jung O;Nam, Sang Chul
    • Environmental Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.267-276
    • /
    • 2013
  • This study presents a comparison of different protocols for the synthesis of iron-loaded zeolites, and the results of their application, as well as that of zeolite-A (Z-A), to the removal of ammonium and phosphate from aqueous media. Zeolites prepared by three methods were evaluated: iron-incorporated zeolites (IIZ), iron-exchanged zeolites (IEZ), and iron-calcined zeolites (ICZ). The optimal iron content for preparing of IIZ, as determined via scanning electron microscopy and X-ray photoelectron spectroscopy analyses, expressed as molar ratio of $SiO_2:Al_2O_3:Fe$, was below 0.05. Ammonia removal revealed that the iron-loaded zeolites have a higher removal capacity than that of Z-A due, not only to ion-exchange phenomena, but also via adsorption. Greater phosphate removal was achieved with IEZ than with ICZ; additionally, no sludge production was observed in this heterogeneous reaction, even though the coagulation process is generally accompanied by the production of a large amount of undesired chemical sludge. This study demonstrates that the developed synthetic iron-loaded zeolites can be applied as a heterogeneous nutrient-removal materials with no sludge production.

Study on the Optimum Levels of Sewage Sludge Application for High Yielding Rice Variety (다수계(多收系) 수도품종(水稻品種)에 대(對)한 부숙(腐熟) 오니(汚泥) 시용량(施用量) 결정(決定))

  • Oh, Wang-Keun;Lee, Choon-Soo;Kwak, Han-Kang;Hwang, Ki-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.1
    • /
    • pp.50-57
    • /
    • 1985
  • An attempt was made to determine the optimum levels of sewage sludge application for seogwangbyeo in the farmer's field. 1. Optimum amount of sewage slude application was 338kg/11a at the fertilizer (N-P-K) level of 15-10-10kg/10a, 430kg/10a at that of 7.5-10-10kg/10a and 544kg/10a at no fertilizer. 2. Number of tillers during all growing period were increased with amounts of sewage sludge and/or chemical fertilizers. 3. Panicles per hill was increased but percent ripeness was decreased with the application of increasing level of sewage sludge and/or chemical fertilizer. In particular, the decrease of ripeness among yield-related components sotood out as an important one to be solved for higher yield. 3. Panicles per hill was increased but percent ripeness was decreased with the application of increasing level of sewage sludge and/or chemical fertilizer. In particular, the decrease of ripeness among yield-related components stood out as an important one to be solved for higher yield. 4. Ripeness was remarkably decreased in high nitrogen content of soil and rice plant under heavy amounts of sewage sludge and/or chemical fertilizer. 5. Ripeness that had direct effect on yield showed significantly possitive correlation with the content of $SiO_2$ and $SiO_2/N$ in rice plant from 25 days after transolanting to harvesting stage. 6. Maximumutillzation of nitrogen and its production efficiency of absorbed nitrogen in sewage sludge were 16.6% and 31.9kg (Yield/kg, N) at the level 15-10-10kg/10a as fertilizer with amounts of sewage sludge application, and 19.0% and 31.8kg (yield/kg, N) at sewage sludge application without fertilizer.

  • PDF

Change in compressive strength of lightweight geopolymers after immersion (침지 후 경량 지오폴리머의 압축강도 변화)

  • Kim, Hakmin;Kim, Yootaek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.174-181
    • /
    • 2021
  • Lightweight geopolymers were fabricated by using IGCC (integrated gasification combined cycle) slag and Si sludge which are classified as general wastes (recyclable resources). Three curing methods were tried to investigate the changes in compressive strength and density according to the curing method and immersion time. Immersion period was tried up to 21 days to observe long-term performance in water. Compressive strength of the specimens cured in oven decreased abruptly with an increase in immersion time. Compressive strength of the specimen cured in autoclave was low after 3 and 7 day immersion; however, increased rapidly after 21 day immersion. On the contrary, compressive strength of the specimen cured in autoclave and oven was high but substantially decreased after 21 day immersion. Conclusively, it was speculated that oven curing is effective for the compressive strength development at early age; however, autoclave curing is more desirable for the long-term performance in water.

Effects of Paper Sludge Application on the Chemical Properties of Paddy Soil and Growth of Paddy Rice.;III. Effects of Paper Sludge Application in the Growth of Paddy Rice. (제지(製紙)슬러지의 시용(施用)이 논 토양(土壤)의 화학성(化學性)과 수도생육(水稻生育)에 미치는 영향(影響);III. 슬러지시용(施用)이 수도생육(水稻生育)에 미치는 영향(影響))

  • Heo, Jong-Soo;Kim, Kwang-Sik;Ha, Ho-Sung
    • Korean Journal of Environmental Agriculture
    • /
    • v.7 no.1
    • /
    • pp.26-33
    • /
    • 1988
  • To investigate the effects of paper sludge on the growth response of paddy rice, paper sludge was applied to pots at the rate of either 300, 600, 900 or 1,200 kg/l0a which was either preadjusted at a C/N ratio of 30 : 1 or not adjusted. The effects were compared with those of the control. 1. Plant heights, number of tillers and dry weight were significantly reduced with the increasing application of paper sludge in the early stages of rice growth, whereas opposite results were observed after the heading stage when treated with C/N ratio preadjusted paper sludge. 2. The uptake of $N,P_2O_5,K_2O$ and $SiO_2$ by rice plants grown in paper sludge treated soil was significantly reduced in the early stages of rice growth. Conversely, uptake was enhanced in the C/N ratio preadjusted plot in the young panicle formation stage. 3. Zn, Cu and Cd content in rice straw was in the range of $39{\sim}101$, $0{\sim}0.11$ and $0.03{\sim}0.14ppm$, respectively, and Pb and Cr in rice straw were not detected at all. However, there was no difference in the content of all these heavy metals in rice straw irrespective of treatment.

  • PDF

Mineralogical and Physico-chemical Properties of Sludge Produced During Artificial Sand Processing (국내 화강암류를 이용한 일부 인공쇄석사 제조과정에서 발생되는 슬러지의 광물.물리화학적 특성)

  • Yoo, Jang-Han;Kim, Yong-Ug
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.303-311
    • /
    • 2007
  • The consumption of artificially crushed sands exceeds more than 30 percent of the domestic sand supply in South Korea, and its rate is still increasing. For the manufacture of crushed sand granites and granitic gneisses are preferred, fine fractions (i.e. sludge, particles finer than 63 microns) are removed by use of flocculation agents, and its amount occupy about 15 wt%. The sludges consist of quartz, feldspars, micas, chlorite/vermiculite, kaolinites, smectites and occasionally calcite. Among the clay minerals micas are usually predominant, and $14{\AA}$ minerals, kaolinites and smectites are rather scarce. Jurassic granites usually contain more kaolinites and smectites than those of Cretaceous to Tertiary granites, probably due to longer geologic ages. On the other hand, sludge from Precambrian gneiss does not contain kaolinites and smectites. Chemical analyses for the granites and their sludges show rather clear differences in most of major chemical components. Except for $SiO_2,\;Na_2O\;and\;K_2O$, all other components represent rather clear increase. Decrease of $SiO_2$ content is attributed to the relative decrease of quartz in the sludges. And the $Na_2O decrease is caused by a relatively stronger weathering property of albite compared to Ca plagioclase. The $K_2O$ content shows rather small differences throughout the whole samples. The increases of $Al_2O_3$ and other major components resulted from weathering processes and most of colored components are also concentrated in the sludges. Particle size analyses reveal that the sludges are categorized as sandy loams in a sand-silt-clay triangular diagram. The sludge is now classified as industrial waste because of its impermeability, and this result was also confirmed by rather higher hydraulic conductivities. For the environmental problems, and accomplishing effective sand manufacture, more fresh rocks with little weathering products must be chosen.

Manufacturing of geopolymers for replacing autoclaved lightweight concrete panels (ALC 패널 대체용 지오폴리머의 제조)

  • Kim, Minjeong;Kim, Yootaek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.1
    • /
    • pp.33-39
    • /
    • 2020
  • Lightweight geopolymers were fabricated by using fused slag from integrated gasification combined cycle as a law material and Si sludge from silicon wafer process as a bloating material for the purpose of replacing autoclaved lightweight concrete (ALC). Density and compressive strength of geopolymers were measured and compared with the properties of ALC according to the variation of mol concentration of alkaline activator, W/S ratio, addition of fibers, and addition of polystyrene and the possibility of replacing ALC panel was estimated through the comparisons. Although the geopolymer satisfying the standard of ALC panel was not made by controlling mol concentration and W/S ratio, addition of inserts such as fibers and polystyrene insert was tried to overcome the obstacle of enhancing properties. Geopolymers cannot satisfying the standard of ALC panel by adding carbon or glass fibers; however, adding fibers can be suggested as one of the methods enhancing compressive strength because the compressive strength of the specimen containing 0.3 wt.% glass fibers was increased by 3 times. The maximum addition of polystyrene insert was turned out to be 50 vol.% and the properties of geopolymers varied by the method of insertion. When using single polystyrene insert, compressive strength was 17.8 MPa and density was 0.996 g/㎤ which were similar values to the standard of ALC panel. If the difficulties of reproductivity of production and insertion method of inserts were overcome through the future research, the geopolymers containing polystyrene inserts could possibly replace ALC panel.

Properties of quasi-noncombustible ultra-lightweight geopolymer (준불연 초경량 지오폴리머의 물성)

  • Kim, Yootaek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.3
    • /
    • pp.132-139
    • /
    • 2019
  • EPS (expanded polystyrene) is one of the most used building materials for insulation that is favored by its excellent heat insulation, economical efficiency and lightweight characteristics. However, EPS is vulnerable to the fire and producing large amount of toxic gases in case of fire. Therefore, ultra-lightweight geopolymer which can replace EPS is fabricated by using IGCC (integrated gasification combined cycle) fused slag and Si sludge as raw materials and the possibility of replacement on ultra-lightweight geopolymer for EPS as an insulation building material was evaluated in this study. Ultra-lightweight geopolymer can be fabricated with the pulverized IGCC fused slag having low carbon content and density, compressive strength, thermal conductivity were $0.064g/cm^3$, 0.04 MPa, and 0.072 W/mK, respectively. The thermal conductivity of ultra-lightweight geopolymer is 1.5~2.0 times higher than that of EPS suggested in the KS M 3808; however, the thermal conductivity value of geopolymer is meaningful and competitive to that of EPS in the market. Therefore, ultralightweight geopolymer can be applicable to the building material for thermal insulation purpose and have an enough possibility to replace EPS in the future because it is not only much safer than EPS in case of fire but also it can be fabricate by using waste materials from the industry.

Reactive sputtered tin adhesion for wastewater treatment of BDD electrodes (TiN 중간층을 이용한 수처리용 BDD 전극)

  • KIM, Seo-Han;KIM, Shin;KIM, Tae-Hun;SONG, Pung-Keun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.69-69
    • /
    • 2017
  • For several decades, industrial processes consume a huge amount of raw water for various objects that consequently results in the generation of large amounts of wastewater. There effluents are mainly treated by conventional technologies such are aerobic, anaerobic treatment and chemical coagulation. But, there processes are not suitable for eliminating all hazardous chemical compounds form wastewater and generate a large amount of toxic sludge. Therefore, other processes have been studied and applied together with these techniques to enhance purification results. These techniques include photocatalysis, absorption, advanced oxidation processes, and ozonation, but also have their own drawbacks. In recent years, electrochemical techniques have received attention as wastewater treatment process that show higher purification results and low toxic sludge. There are many kinds of electrode materials for electrochemical process, among them, boron doped diamond (BDD) attracts attention due to good chemical and electrochemical stability, long lifetime and wide potential window that necessary properties for anode electrode. So, there are many researches about high quality BDD, among them, researches are focused BDD on Si substrate. But, Si substrate is hard to apply electrode application due to the brittleness and low life time. And other substrates are also not suitable for wastewater treatment electrode due to high cost. To solve these problems, Ti has been candidate as substrate in consideration of cost and properties. But there are critical issues about adhesion that must be overcome to apply Ti as substrate. In this study, to overcome this problem, TiN interlayer is introduced between BDD and Ti substrate. TiN has higher electrical and thermal conductivity, melting point, and similar crystalline structure with diamond. The TiN interlayer was deposited by reactive DC magnetron sputtering (DCMS) with thickness of 50 nm, $1{\mu}m$. The microstructure of BDD films with TiN interlayer were estimated by FE-SEM and XRD. There are no significant differences in surface grain size despite of various interlayer. In wastewater treatment results, the BDD electrode with TiN (50nm) showed the highest electrolysis speed at livestock wastewater treatment experiments. It is thought to be that TiN with thickness of 50 nm successfully suppressed formation of TiC that harmful to adhesion. And TiN with thickness of $1{\mu}m$ cannot suppress TiC formation.

  • PDF

The Effect of Unleached Agents on the Stabilization/Solidification of Hazardous Sludge Containing Heavy Metals (有害슬러지 固形化에 따른 重金屬 溶出防止剖의 影饗)

  • 이성호
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.2
    • /
    • pp.46-54
    • /
    • 1993
  • This study was carried out on the stabilized/solidified treatment for the reducing leachability of hazardous heavy metals copper, lead, chromium and cadmium in the hazardous sludge which treated to be unleached heavy metals by sodium diethyl dithiocarbamate. Cement matrix was analyzed for the leachability of 24 hrs and dynamic leaching test, structure and the optimum condition for the stabilization and solidification of the hazardous sludge. In 28 days of curing time the unconfined compressive strength was 21.5 kg/cm$^2$ at the ratio of portland cement (0.5)+fly ash (0.25) and 23.5 kg/cmz at the ratio of portland cement (0.5)+fly ash (0.25) + cake (0.25). High concentration of Pb, Cr and Cd in the sea water and Cu in the distilled water were leached at the dynamic leaching test. The concentration of leaching heavy metals for specimens which were tested 24 hrs were found low leachability with decreasing pH of leachant. According to dynamic leaching test, the low level of copper, lead, cadmium and chromium were leached in the cement matrix with sodium diethyl dithiocarbamate. But the effective diffusion coefficient of unleached cement matrix which was treated sodium diethyl dithiocarbamate was decreased above 2 times than that of cement matrix. The relation of leachant renewal period (Y) and cumulative fraction ion leached (X) was the following regression equations. Solidification with unleached agent. Y$_{Cu}$ = 1413752X + 247, Y$_{Pb}$ = 223501IX + 214, Y$_{Cr}$ = 8310601X - 472, Y$_{Cd}$ = 168787X + 1061 The structure of' solidified matrix with X-ray diffraction analysis was composed more Ca(OH)$_2$, Si, Mg(OH)$_2$ and Al in the unleached cement matrix than those in cement matrix.

  • PDF

Added Effects of Gypsum on the Solidification of Sewage Sludge Cake (하수슬러지의 고화처리에 미치는 석고첨가의 영향)

  • Kim, Eung-Ho;Lee, Ki-Suk;Cho, Jin-kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.4
    • /
    • pp.303-310
    • /
    • 2000
  • This study is conducted in order to find more improved solidifying effects than the former converter slag solidification technology. The converter slag is used as a solidifying agent, and the quick lime and the gypsum are used as solidifying aids. Several tests are performed for the purpose of investigating the solidifying effects and the applicability of the solidified sludge as a daily or intermediate landfill cover. The unconfined uniaxial compressive strength, pH and leaching of heavy metal are investigated. In the case of using both quick lime and gypsum as solidifying aids, the compressive strength of specimen has significantly increased that of specimen which used quick lime only. The compressive strength of each specimen cured for 7 days which is mixed with quick lime and gypsum as mixing ratios 7:1, 5:1 and 3:1 are $0.59kg/cm^2$, $1.18kg/cm^2$, and $1.25kg/cm^2$, respectively. The results of all the leaching tests of specimen cured for 7 days show that the concentrations of leachate heavy metals(Cu, Pb, Cd and $Cr^{6+}$) are lower than the Korea toxic waste criteria. The microstructure analysis by SEM shows that needlelike crystals appear as the solidification proceed. The analysis of these crystals by EDS confirms that these main components are Ca. Si etc. Also, XRD analysis shows that the main solidification products are CSH and Ettringite; in addition, $Ca(OH)_2$ CAH are observed. When the added gypsum is used as a solidifying aid, more improved solidifying effects are obtained and the solidified sludge may be appropriately used as a daily or intermediate landfill cover.

  • PDF