• Title/Summary/Keyword: Si quantum dot

Search Result 46, Processing Time 0.024 seconds

Synthesis and Characterization of CdSe Quantum Dot with Injection Temperature and Reaction Time (Injection 온도 및 합성시간에 따른 CdSe 양자점 합성 및 특성)

  • Eom, Nu-Si-A;Kim, Taek-Soo;Choa, Yong-Ho;Kim, Bum-Sung
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.140-144
    • /
    • 2012
  • Compared with bulk material, quantum dots have received increasing attention due to their fascinating physical properties, including optical and electronic properties, which are due to the quantum confinement effect. Especially, Luminescent CdSe quantum dots have been highly investigated due to their tunable size-dependent photoluminescence across the visible spectrum. They are of great interest for technical applications such as light-emitting devices, lasers, and fluorescent labels. In particular, quantum dot-based light-emitting diodes emit high luminance. Quantum dots have very high luminescence properties because of their absorption coefficient and quantum efficiency, which are higher than those of typical dyes. CdSe quantum dots were synthesized as a function of the synthesis time and synthesis temperature. The photoluminescence properties were found strongly to depend on the reaction time and the temperature due to the core size changing. It was also observed that the photoluminescence intensity is decreased with the synthesis time due to the temperature dependence of the band gap. The wavelength of the synthesized quantum dots was about 550-700 nm and the intensity of the photoluminescence increased about 22~70%. After the CdSe quantum dots were synthesized, the particles were found to have grown until reaching a saturated concentration as time increased. Red shift occurred because of the particle growth. The microstructure and phase developments were measured by transmission electron microscopy (TEM) and X-ray diffractometry (XRD), respectively.

Photovoltaic characteristics of Si quantum dots solar cells

  • Ko, Won-Bae;Lee, Jun-Seok;Lee, Sang-Hyo;Cha, Seung-Nam;Hong, Jin-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.489-489
    • /
    • 2011
  • The effect of Si quantum dots for solar cell appications was investigated. The 5 ~ 10 nm Si nanoparticle was fabricated on p-type single and poly crystalline wafer by magnetron sputtering and laser irradiation process. Scanning electron microscopy (SEM), atomic force measurement (AFM) and transmission electron microscopy (TEM) images showed that the Si QDs array were clearly embedded in insulating layer ($SiO_2$). Photoluminesence (PL) measurements reliably exhibited bandgap transitions with every size of Si QDs. The photo-current measurements were showed different result with size of QD and number of superlattice.

  • PDF

Effect of Si Doping in Self-Assembled InAs Quantum Dots on Infrared Photodetector Properties (Si 도핑이 InAs 자기조립 양자점 적외선 소자 특성에 미치는 효과)

  • Seo, Dong-Bum;Hwang, Je-hwan;Oh, Boram;Kim, Jun Oh;Lee, Sang Jun;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.542-546
    • /
    • 2019
  • We investigate the characteristics of self-assembled quantum dot infrared photodetectors(QDIPs) based on doping level. Two kinds of QDIP samples are prepared using molecular beam epitaxy : $n^+-i(QD)-n^+$ QDIP with undoped quantum dot(QD) active region and $n^+-n^-(QD)-n^+$ QDIP containing Si direct doped QDs. InAs QDIPs were grown on semi-insulating GaAs (100) wafers by molecular-beam epitaxy. Both top and bottom contact GaAs layer are Si doped at $2{\times}10^{18}/cm^3$. The QD layers are grown by two-monolayer of InAs deposition and capped by InGaAs layer. For the $n^+-n^-(QD)-n^+$ structure, Si dopant is directly doped in InAs QD at $2{\times}10^{17}/cm^3$. Undoped and doped QDIPs show a photoresponse peak at about $8.3{\mu}m$, ranging from $6{\sim}10{\mu}m$ at 10 K. The intensity of the doped QDIP photoresponse is higher than that of the undoped QDIP on same temperature. Undoped QDIP yields a photoresponse of up to 50 K, whereas doped QDIP has a response of up to 30 K only. This result suggests that the doping level of QDs should be appropriately determined by compromising between photoresponsivity and operating temperature.

Characterization of Band Gaps of Silicon Quantum Dots Synthesized by Etching Silicon Nanopowder with Aqueous Hydrofluoric Acid and Nitric Acid

  • Le, Thu-Huong;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1523-1528
    • /
    • 2014
  • Silicon quantum dots (Si QDs) were synthesized by etching silicon nanopowder with aqueous hydrofluoric acid (HF) and nitric acid ($HNO_3$). Then, the hydride-terminated Si QDs (H-Si QDs) were functionalized by 1- octadecene (ODE). By only controlling the etching time, the maximum luminescence peak of octadecylterminated Si QDs (ODE-Si QDs) was tuned from 404 nm to 507 nm. The average optical gap was increased from 2.60 eV (ODE-Si QDs-5 min) for 5 min of etching to 3.20 eV (ODE-Si QDs-15 min) for 15 min of etching, and to 3.40 eV (ODE-Si QDs-30 min) for 30 min of etching. The electron affinities (EA), ionization potentials (IP), and quasi-particle gap (${\varepsilon}^{qp}_{gap}$) of the Si QDs were determined by cyclic voltammetry (CV). The quasi-particle gaps obtained from the CV were in good agreement with the average optical gap values from UV-vis absorption. In the case of the ODE-Si QDs-30 min sample, the difference between the quasi-particle gap and the average optical gap gives the electron-hole Coulombic interaction energy. The additional electronic levels of the ODE-Si QDs-30 min and ODE-Si QDs-15 min samples determined by the CV results are interpreted to have originated from the Si=O bond terminating Si QD.

Synthesis of InP Nanocrystal Quantum Dots Using P(SiMe2tbu)3

  • Jeong, So-Myeong;Kim, Yeong-Jo;Jeong, So-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.533-534
    • /
    • 2012
  • Colloidal III-V semiconductor nanocrystal quantum dots (NQDs) have attracted attention as they can be applied in various areas such as LED, solar cell, biological imaging, and so on because they have decreased ionic lattices, lager exciton diameter, and reduced toxicity compared with II-VI compounds. However, the study and application of III-V semiconductor nanocrystals is limited by difficulties in control nucleation because the molecular bonds in III-V semiconductors are highly covalent compared to II-VI compounds. There is a need for a method that provides rapid and scalable production of highly quality nanoparticles. We present a new synthetic scheme for the preparation of InP nanocrystal quantum dots using new phosphorus precursor, P(SiMe2tbu)3. InP nanocrystals from 530nm to 600nm have been synthesized via the reaction of In(Ac)3 and new phosphorus precursor in noncoordinating solvent, ODE. This opens the way for the large-scale production of high quality Cd-free nanocrystal quantum dots.

  • PDF

A review on inorganic phosphor materials for white LEDs (백색 발광다이오드(White LEDs)용 무기형광체 재료의 연구개발 현황)

  • Hwang, Seok Min;Lee, Jae Bin;Kim, Se Hyeon;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.5
    • /
    • pp.233-240
    • /
    • 2012
  • White LEDs (light-emitting diodes) are promising new-generation light sources which can replace conventional lamps due to their high reliability, low energy consumption and eco-friendly effects. This paper briefly reviews recent progress of oxy/nitride host phosphor and quantum dot materials with broad excitation band characteristics for phosphor-converted white LEDs. Among oxy/nitride host materials, $M_2Si_5N_8$ : $Eu^{2+}$, $MAlSiN_3$ : $Eu^{2+}$ M-SiON (M = Ca, Sr, Ba), ${\alpha}/{\beta}$-SiAlON : $Eu^{2+}$ are excellent phosphors for white LED using blue-emitting chip. They have very broad excitation bands in the range of 440~460 nm and exhibit emission from green to red. In this paper, In this review we focus on recent developments in the crystal structure, luminescence and applications of the oxy/nitride phosphors for white LEDs. In addition, the application prospects and current trends of research and development of quantum dot phosphors are also discussed.

Electrical and Magnetic Properties of Tunneling Device with FePt Magnetic Quantum Dots (FePt 자기 양자점 터널링 소자의 전기적 특성과 자기적 특성 연구)

  • Pak, Sang-Woo;Suh, Joo-Young;Lee, Dong-Uk;Kim, Eun-Kyu
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.1
    • /
    • pp.57-62
    • /
    • 2011
  • We have studied the electrical and magnetic transport properties of tunneling device with FePt magnetic quantum dots. The FePt nanoparticles with a diameter of 8~15 nm were embedded in a $SiO_2$ layer through thermal annealing process at temperature of $800^{\circ}C$ in $N_2$ gas ambient. The electrical properties of the tunneling device were characterized by current-voltage (I-V) measurements under the perpendicular magnetic fields at various temperatures. The nonlinear I-V curves appeared at 20 K, and then it was explained as a conductance blockade by the electron hopping model and tunneling effect through the quantum dots. It was measured also that the negative magneto-resistance ratio increased about 26.2% as increasing external magnetic field up to 9,000 G without regard for an applied electric voltage.

SWIR 이미지 센서 기술개발 동향 및 응용현황

  • Lee, Jae-Ung
    • Ceramist
    • /
    • v.21 no.2
    • /
    • pp.59-74
    • /
    • 2018
  • Imaging in the Short Wave Infrared (SWIR) provides several advantages over the visible and near-infrared regions: enhanced image resolution in in foggy or dusty environments, deep tissue penetration, surveillance capabilities with eye-safe lasers, assessment of food quality and safety. Commercially available SWIR imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits(ROIC) by indium bump bonding Infrared image sensors made of solution-processed quantum dots have recently emerged as candidates for next-generation SWIR imagers. They combine ease of processing, tunable optoelectronic properties, facile integration with Si-based ROIC and good performance. Here, we review recent research and development trends of various application fields of SWIR image sensors and nano-materials capable of absorption and emission of SWIR band. With SWIR sensible nano-materials, new type of SWIR image sensor can replace current high price SWIR imagers.

Design for Hybrid Circular Bragg Gratings for a Highly Efficient Quantum-Dot Single-Photon Source

  • Yao, Beimeng;Su, Rongbin;Wei, Yuming;Liu, Zhuojun;Zhao, Tianming;Liu, Jin
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1502-1505
    • /
    • 2018
  • We present a design for hybrid circular Bragg gratings (hCBGs) for efficiently extracting single-photons emitted by InAs quantum dots (QDs) embedded in GaAs. Finite-difference time-domain simulations show that a very high photon collection efficiency (PCE) up to 96% over a 50 nm bandwidth and pronounced Purcell factors up to 19 at cavity resonance are obtained. We also systematically investigate the geometry parameters, including the $SiO_2$ thickness, grating period, gap width and the central disk radius, to improve the device performances. Finally, the PCEs and the Purcell factors of QDs located at different positions of the hCBG are studied, and the results show great robustness against uncertainties in the location of the QD.

Si(111) 기판에 높은 공간밀도를 갖는 InN 양자점 핵생성 연구

  • Lee, Hyeon-Jung;Jo, Byeong-Gu;Lee, Gwan-Jae;Choe, Il-Gyu;Kim, Jin-Su;Im, Jae-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.227-227
    • /
    • 2013
  • 본 연구에서는 Si(111) 기판에 성장온도 및 InN 증착양 변화에 따른 InN 양자점(Quantum Dot) 핵성생(Nucleation) 특성에 대해 논의한다. InN 양자점은 Nitrogen-Plasma 소스를 장착한 분자선증착기(MBE)를 이용하여 $0.103{\AA}/s$의 성장속도로 성장하였다. 성장온도를 $700^{\circ}C$에서 $300^{\circ}C$로 변환하면서 형성한 시료에서 lnN 양자점의 공간밀도는 $9.4{\times}10^7/cm^2$부터 $1.1{\times}10^{11}/cm^2$를 나타냈다. 가장 높은 공간밀도인 $1.1{\times}10^{11}/cm^2$는 기존에 보고된 값 ($7.7{\times}10^{10}/cm^2$)보다 상대적으로 높은 값을 갖는다 [1,2]. InN 증착양을 93, 186, 및 $372{\AA}/s$으로 각각 변화시켜 형성하여 양자점의 초기 성장거동을 분석하였다. InN 증착양이 증가함에 따라 양자점의 공간밀도는 $4.4{\times}10^{10}/cm^2$$6.4{\times}10^{10}/cm^2$까지 증가하였다. 일반적으로 InP 및 GaAs 기판을 기반으로 한 In(Ga)As 양자점은 증착양이 증가함에 따라 밀도는 감소하고 크기는 증가하는 경향을 보이며, 이는 같은 상 (Phase)을 갖는 물질들끼리 결합하려는 경향이 있기 때문이다. 본 실험에서는 기존 결과와 다른 경향을 보이고 있는데, 이는 Si(111) 기판과 InN 사이의 격자부정합이 상대적으로 크기 때문에 InN 양자구조가 커지는 대신 추가로 새로운 핵생성 메커니즘에 의한 것으로 설명할 수 있다. 이러한 InN 증착양에 따른 InN 양자점 성장거동을 표면에너지를 포함한 이론적인 모델을 통해 논의하고자 한다.

  • PDF