• Title/Summary/Keyword: Si nanostructures

Search Result 108, Processing Time 0.025 seconds

Effects of Growth Conditions on Properties of ZnO Nanostructures Grown by Hydrothermal Method (수열합성법으로 성장된 ZnO 나노구조의 성장조건에 따른 특성)

  • Cho, Min-Young;Kim, Min-Su;Kim, Ghun-Sik;Choi, Hyun-Young;Jeon, Su-Min;Yim, Kwang-Gug;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Lee, Joo-In;Leem, Jae-Young
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.262-266
    • /
    • 2010
  • ZnO nanostructures were grown on an Au seed layer by a hydrothermal method. The Au seed layer was deposited by ion sputter on a Si (100) substrate, and then the ZnO nanostructures were grown with different precursor concentrations ranging from 0.01 M to 0.3M at $150^{\circ}C$ and different growth temperatures ranging from $100^{\circ}C$ to $250^{\circ}C$ with 0.3 M of precursor concentration. FE-SEM (field-emission scanning electron microscopy), XRD (X-ray diffraction), and PL (photoluminescence) were carried out to investigate the structural and optical properties of the ZnO nanostructures. The different morphologies are shown with different growth conditions by FE-SEM images. The density of the ZnO nanostructures changed significantly as the growth conditions changed. The density increased as the precursor concentration increased. The ZnO nanostructures are barely grown at $100^{\circ}C$ and the ZnO nanostructure grown at $150^{\circ}C$ has the highest density. The XRD pattern shows the ZnO (100), ZnO (002), ZnO (101) peaks, which indicated the ZnO structure has a wurtzite structure. The higher intensity and lower FWHM (full width at half maximum) of the ZnO peaks were observed at a growth temperature of $150^{\circ}C$, which indicated higher crystal quality. A near band edge emission (NBE) and a deep level emission (DLE) were observed at the PL spectra and the intensity of the DLE increased as the density of the ZnO nanostructures increased.

Real-time Observation of Evolution Dynamics of Ge Nanostructures on Si Surfaces by Photoelectron Emission Microscopy (자외선 광여기 전자현미경을 이용한 Si 표면 위에 Ge 나노구조의 성장 동역학에 관한 실시간 연구)

  • Cho, W.S.;Yang, W.C.;Himmerlich, M.;Nemanich, R.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.145-152
    • /
    • 2007
  • The evolution dynamics of nanoscale Ge islands on both Si (001) and (113) surfaces is explored using ultraviolet photoelectron emission microscopy (UV-PEEM). Real-time monitoring of the in-situ growth of the Ge island structures can allow us to study the variation of the size, the shape and the density of the nanostructures. For Ge depositions greater than ${\sim}4$ monolayer (ML) with a growth rate of ${\sim}0.4\;ML/min$ at temperatures of $450-550^{\circ}C$, we observed island nucleation on both surfaces indicating the transition from strained layer to island structure. During continuous deposition the circular islands grew larger via ripening processes. AFM measurements showed that the islands grown on Si (001) were dome-shaped while the islands on Si (113) were multiple-side faceted with flat tops of (113)-orientation. In contrast, for Ge deposition with a lower growth rate of ${\sim}0.15\;ML/min$ on Si(113), we observed the shape transition from circular into elongated island structures. The elongated islands grew longer along the [$33\bar{2}$] during continuous Ge deposition. The shape evolution of the islands is discussed in terms of strain relaxation and kinetic effects.

UV nanoimprint lithography using a multi-dispensing method (다중 디스펜싱 방법에 의한 UV-나노임프린트 리소그래피)

  • 심영석;손현기;신영재;이응숙;정준호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.604-610
    • /
    • 2004
  • Ultraviolet-nanoimprint lithography (UV-NIL) is a promising method for cost-effectively defining nanoscale structures at room temperature and low pressure. Since the resolution of transferred nanostructures depends strongly upon that of nanostamps, the nanostamp fabrication technology is a key technology to UV-NIL. In this paper, a $5\times5\times0.09$ in. quartz stamp whose critical dimension is 377 nm was fabricated using the etching process in which a Cr film was employed as a hard mask for transferring nanostructures onto the quartz plate. To effectively apply the fabricated 5-in. stamp to UV-NIL on a 4-in. Si wafer, we have proposed a new UV-NIL process using a multi-dispensing method as a way to supply resist on a wafer. Experiments have shown that the multi-dispensing method can enable UV-NIL using a large-area stamp.

ZnO Nanostructure Formed by Off-axis Pulsed Laser Deposition (Off-axis 펄스레이저 증착법으로 성장된 ZnO 나노구조에 관한 연구)

  • 강정석;강홍성;김재원;이상렬
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.319-322
    • /
    • 2004
  • ZnO nanostructures were formed on a Si substrate by off-axis pulsed laser deposition(PLD) system in which a substrate plane was tilted toward a plume propagation direction. Atomic force microscopy (AFM) showed islands of 20∼40 nm width. From the x-ray diffraction (XRD) pattern exhibiting only (002) ZnO peak, the islands observed in AFM image were found to well crystallized. Optical bandgap enlargement from 3.26 eV to 3.35 and 3.47 eV due to the quantum size effect of ZnO nanostructures were observed by Photoluminescence (PL) at room temperature.

Dislocations as native nanostructures - electronic properties

  • Reiche, Manfred;Kittler, Martin;Uebensee, Hartmut;Pippel, Eckhard;Hopfe, Sigrid
    • Advances in nano research
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Dislocations are basic crystal defects and represent one-dimensional native nanostructures embedded in a perfect crystalline matrix. Their structure is predefined by crystal symmetry. Two-dimensional, self-organized arrays of such nanostructures are realized reproducibly using specific preparation conditions (semiconductor wafer direct bonding). This technique allows separating dislocations up to a few hundred nanometers which enables electrical measurements of only a few, or, in the ideal case, of an individual dislocation. Electrical properties of dislocations in silicon were measured using MOSFETs as test structures. It is shown that an increase of the drain current results for nMOSFETs which is caused by a high concentration of electrons on dislocations in p-type material. The number of electrons on a dislocation is estimated from device simulations. This leads to the conclusion that metallic-like conduction exists along dislocations in this material caused by a one-dimensional carrier confinement. On the other hand, measurements of pMOSFETs prepared in n-type silicon proved the dominant transport of holes along dislocations. The experimentally measured increase of the drain current, however, is here not only caused by an higher hole concentration on these defects but also by an increasing hole mobility along dislocations. All the data proved for the first time the ambipolar behavior of dislocations in silicon. Dislocations in p-type Si form efficient one-dimensional channels for electrons, while dislocations in n-type material cause one-dimensional channels for holes.

Growth of $SiO_2$ nanowire by VS method. (기상증착방법에 의한 이산화규소 나노와이어의 성장)

  • 노대호;김재수;변동진;진정근;김나리;양재웅
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.115-115
    • /
    • 2003
  • Silica nanostructures have been attached considerable attention because of theirs potential application in mesoscopic research and the potential use of large surface area structure of catalysts. SiO2 nannowire and nanorods was synthesized various methods including thermal evaporation, chemical vapor deposition (CVD), and laser ablation methods. In this experiments, SiO2 nanowire were grown using thermal evaporation method followed by VS (Vapor-Solid) growth mechanisms. Grown SiO2 nanowires were amorphous phases because of its low growth temperatures. Grown nanowires diameters were about 20-40nm at all growth conditions, but its microstructres were different by that used substrate because of it's oxygen contents.

  • PDF

Rapid Surface Heating Promotes Laser Desorption Ionization of Thermally Labile Molecules from Surfaces

  • Han, Sang Yun
    • Mass Spectrometry Letters
    • /
    • v.7 no.4
    • /
    • pp.91-95
    • /
    • 2016
  • In recent years, matrix-free laser desorption ionization (LDI) for mass spectrometry of thermally labile molecules has been an important research subject in the pursuit of new ionization methods to serve as alternatives to the conventional matrix-assisted laser desorption ionization (MALDI) method. While many recent studies have reported successful LDI of thermally labile molecules from various surfaces, mostly from surfaces with nanostructures, understanding of what drives the LDI process still requires further study. This article briefly reviews the thermal aspects involved in the LDI mechanism, which can be characterized as rapid surface heating. The thermal mechanism was supported by observed LDI and postsource decay (PSD) of peptide ions produced from flat surfaces with special thermal properties including amorphous Si (a-Si) and tungsten silicide ($WSi_x$). In addition, the concept of rapid surface heating further suggests a practical strategy for the preparation of LDI sample plates, which allows us to choose various surface materials including crystalline Si (c-Si) and Au tailorable to specific applications.

Vertical Growth of Amorphous SiOx Nano-Pillars by Pt Catalyst Films (Pt 촉매 박막을 이용한 비정질 SiOx 나노기둥의 수직성장)

  • Lee, Jee-Eon;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.699-704
    • /
    • 2018
  • One-dimensional nanostructures have attracted increasing attention because of their unique electronic, optical, optoelectrical, and electrochemical properties on account of their large surface-to-volume ratio and quantum confinement effect. Vertically grown nanowires have a large surface-to-volume ratio. The vapor-liquid-solid (VLS) process has attracted considerable attention for its self-alignment capability during the growth of nanostructures. In this study, vertically aligned silicon oxide nano-pillars were grown on Si\$SiO_2$(300 nm)\Pt substrates using two-zone thermal chemical vapor deposition system via the VLS process. The morphology and crystallographic properties of the grown silicon oxide nano-pillars were investigated by field emission scanning electron microscopy and transmission electron microscopy. The diameter and length of the grown silicon oxide nano-pillars were found to be dependent on the catalyst films. The body of the silicon oxide nano-pillars exhibited an amorphous phase, which is consisted with Si and O. The head of the silicon oxide nano-pillars was a crystalline phase, which is consisted with Si, O, Pt, and Ti. The vertical alignment of the silicon oxide nano-pillars was attributed to the preferred crystalline orientation of the catalyst Pt/Ti alloy. The vertically aligned silicon oxide nano-pillars are expected to be applied as a functional nano-material.

A Study on the Annealing Effect of SnO Nanostructures with High Surface Area (높은 표면적을 갖는 SnO 나노구조물의 열처리 효과에 관한 연구)

  • Kim, Jong-Il;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.536-542
    • /
    • 2018
  • Tin dioxide, $SnO_2$, is a well-known n-type semiconductor that shows change in resistance in the presence of gas molecules, such as $H_2$, CO, and $CO_2$. Considerable research has been done on $SnO_2$ semiconductors for gas sensor applications due to their noble property. The nanomaterials exhibit a high surface to volume ratio, which means it has an advantage in the sensing of gas molecules. In this study, SnO nanoplatelets were grown densely on Si substrates using a thermal CVD process. The SnO nanostructures grown by the vapor transport method were post annealed to a $SnO_2$ phase by thermal CVD in an oxygen atmosphere at $830^{\circ}C$ and $1030^{\circ}C$. The pressure of the furnace chamber was maintained at 4.2 Torr. The crystallographic properties of the post-annealed SnO nanostructures were investigated by Raman spectroscopy and XRD. The change in morphology was confirmed by scanning electron microscopy. As a result, the SnO nanostructures were transformed to a $SnO_2$ phase by a post-annealing process.

Application of Polystyrene/SiO2 Core-shell Nanospheres to Improve the Light Extraction of GaN LEDs

  • Yeon, Seung Hwan;Kim, Kiyong;Park, Jinsub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.314.2-314.2
    • /
    • 2014
  • To improve the optical and electrical properties of commercialized GaN-based light-emitting diodes (LEDs), many methods are suggested. In recent years, great efforts have been made to improve the internal quantum efficiency and light extraction efficiency (LEE) and promising approaches are suggested using a patterned sapphire substrate (PSS), V-pit embedded LED structures, and silica nanostructures. In this study, we report on the enhancement of photoluminescence (PL) intensity in GaN-based LED structures by using the combination of SiO2 (silica) nanospheres and polystyrene/SiO2 core-shell nanospheres. The SiO2 nanospheres-coated LED structure shows the slightly increased PL intensity. Moreover the polystyrene/SiO2 core-shell nanospheres-coated structure shows the more increase of PL intensity comparing to that of only SiO2 spheres-coated structure and the conventional structure without coating of nanospheres. The Finite-difference time-domain (FDTD) simulation results show corresponding result with experimentally observed results. The mechanism of enhancement of PL intensity using the coating of polystyrene/SiO2 core-shell nanospheres on LED surface can be explained by the improvement in extraction efficiency by both increasing the probability of light escape by reducing Fresnel reflection and by multiple scattering within the core-shell nanospheres.

  • PDF