• Title/Summary/Keyword: Si melt

Search Result 264, Processing Time 0.024 seconds

Petrological study on the Miocene Dangsari volcanic rocks, eastern part of Ulsan city, southeastern Korea (울산 동부 마이오세 당사리화산암류에 대한 암석학적 연구)

  • 윤성효;고정선;박기호;이영애
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.169-186
    • /
    • 2000
  • The Miocene volcanic rocks in the Dangsari area, eastern part of Ulsan city, are mainly composed of andesite lava flows and pyroclastic rocks. The andesite lavas are identified as two-pyroxone andesite, comprising phenocrysts of augite ($Wo_{43.2}$ $En_{41.0}$ $Fs_{15.8}$ ) and hyperthene ($Wo_{2.7}$ $65.8_{En}$ $_{Fs}$ 31.5). The andesitic pyroclastic rocks are largely composed of pyroclastic breccias with alternating tuff-breccia and lapilli tuff, which showing planar layering, and minor amount of andesitic tuff with thin deposits of interlayered tuffaceous shale. According to the petrochemical data, andesitic rocks belong to medium-K calc-alkaline andesite. The position of bulk composition on the AFM diagram and the presence of normative quartz and hypersthene indicate that the volcanic rocks are calc-alkaline. The trace element composition and REE patterns of andesite, which are characterized by a high LILE/HFSE ratio and enrichment in LREE, suggest that they are typical of continental margin arc calc-alkalic volcanic rocks produced in the subduction environment. On the discrimination diagram, the Dangsari volcanic rocks fall into the fields of subduction related continental margin arc volcanic province. The primary magic melts may be derived from about 15% partial melting of mantle wedge in the upper mantle under destructive plate margin. And the melt evolved to calc-alkaline andesite magma by fractional crystallization and the magma was a little contaminated with crustal materials.

  • PDF

Composition and Evolution of Lithosphere Beneath the Jeju Island Region (I): A Review (제주도 암석권의 성분과 진화(I): 리뷰)

  • Yang, Kyounghee
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.261-281
    • /
    • 2016
  • Our knowledge of the lithosphere beneath the Korean Peninsula has been improved through petrologic and geochemical studies of upper mantle xenoliths hosted by Quaternary intraplate alkali basalts from Jeju Island. The xenoliths are mostly spinel lherzolites, accompanied by subordinate harzburgite and pyroxenites. The mantle xenoliths represent residual mantle material showing textural and geochemical evidence for at least a three-stage evolution, fractional partial melting, recrystallization, and metasomatism. Their composition primarily controlled by early fractional melt extraction and porphyroclastic and mylonitic fabrics formed in a shear-dominated environment, which was subsequently modified by residual slab-derived fluids (or melts). Modal metasomatic products occur as both anhydrous phase(orthopyroxene) and hydrous phase (phlogopite). Late-stage orthopyroxene is more common than phlogopite. However, chemical equilibrium is evident between the primary and secondary orthopyroxene, implying that the duration of post-metasomatic high temperatures enabled complete resetting/reequilibration of the mineral compositions. The metasomatic enrichment pre-dates the host Jeju Quaternary magmatism, and a genetic relationship with the host magmas is considered unlikely. Following enrichment in the peridotite protolith in the mantle wedge, the upper mantle beneath proto-Jeju Island was transformed from a subarc environment to an intraplate environment. The Jeju peridotites, representing old subarc fragments, were subsequently transported to the surface, incorporated into ascending Quaternary intraplate alkali basalt. The result of this study implies that long term material transfer in the transformation of geotectonic setting from a subarc to intraplate may have played a significant role in the evolution of lithospheric mantle, resulting in the enriched mantle domains, such as EM I or EM II in the lithospheric mantle beneath East Asia.

A Study on the Carbothermic Reduction and Refining of V, Ta and B Oxides by Ar/Ar-H2 Plasma (Ar/Ar-H2 플라즈마에 의한 V, Ta, B 산화물의 탄소용융환원 및 정련)

  • Chung, Yong-Sug;Park, Byung-Sam;Hong, Jin-Seok;Bae, Jung-Chan;Kim, Moon-Chul;Baik, Hong-Koo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.1
    • /
    • pp.81-92
    • /
    • 1996
  • The Ar/Ar-$H_2$ plasma method was applied to reduce oxides and refine metals of V, Ta and B. In addition, the high temperature chemical reaction in Ar plasma and of the refining reaction in the Ar-(20%)$H_2$ plasma were analyzed. The crude V of 96wt% purity was obtained at the ratio of $C/V_{2}O_{5}=4.50$ by the Ar plasma reduction grade and the maximum reduction was obtained at $C/V_{2}O_{5}=4.50$ due to the $O_{2}$ loss from the thermal decomposition of vanadium oxide. In the Ar-(20%)$H_2$ plasma refining, the metallic V of 99.2wt% was produced at the ratio of $C/V_{2}O_{5}=4.40$. It was considered that a main refining reaction resulted from the chemical reaction between the residual carbon and residual oxygen. The metallic Ta of 99.8wt% was obtained at the ratio of $C/Ta_{2}O_{5}=5.10$ in a Ar plasma reduction and the Oz loss from the thermal decomposition of tantalum pentoxide did not take place. The deoxidation reaction was more significant than the decarburization reaction in the Ar-(20%)$H_2$ plasma refining and the metallic Ta of 99.9wt% was produced within the range of $C/Ta_{2}O_{5}$ ratio of 4.50 to 5.10. The Vickers hardness of Ta in the above mentioned range was about 220Hv due to the decrease in a residual oxygen by the deoxidation reaction. On the other hand, C is no suitable agent for the reduction of $B_{2}O_{3}$ by the Ar and Ar-$H_2$ plasma. But Fe-B-Si alloy was produced with the reduction of $B_{2}O_{3}$ in the melt when Fe, C, $B_{2}O_{3}$, and ferroboron mixtures were melted by the high frequency induction melting.

  • PDF

Deformation History of Precambrian Metamorphic Rocks in the Yeongyang-Uljin Area, Korea (영양-울진 지역 선캠브리아기 변성암류의 변형작용사)

  • Kang Ji-Hoon;Kim Nam Hoon;Park Kye-Hun;Song Yong Sun;Ock Soo-Seok
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.179-190
    • /
    • 2004
  • Precambrian metamorphic rocks of Yeongyang-Uljin area, which is located in the eastern part of Sobaegsan Massif, Korea, are composed of Pyeonghae, Giseong, Wonnam Formations and Hada leuco granite gneisses. These show a zonal distribution of WNW-ESE trend, and are intruded by Mesozoic igneous rocks and are unconformably overlain by Mesozoic sedimentary rocks. This study clarifies the deformation history of Precambrian metamorphic rocks after the formation of gneissosity or schistosity on the basis of the geometric and kinematic features and the forming sequence of multi-deformed rock structures, and suggests that the geological structures of this area experienced at least four phases of deformation i.e. ductile shear deformation, one deformation before that, at least two deformations after that. (1) The first phase of deformation formed regional foliations and WNW-trending isoclinal folds with subhorizontal axes and steep axial planes dipping to the north. (2) The second phase of deformation occurred by dextral ductile shear deformation of top-to-the east movement, forming stretching lineations of E-W trend, S-C mylonitic structure foliations, and Z-shaped asymmetric folds. (3) The third phase deformation formed I-W trending open- or kink-type recumbent folds with subhorizontal axes and gently dipping axial planes. (4) The fourth phase deformation took place under compression of NNW-SSE direction, forming ENE-WSW trending symmetric open upright folds and asymmetric conjugate kink folds with subhorizontal axes, and conjugate faults thrusting to the both NNW and SSE with drag folds related to it. These four phases of deformation are closely connected with the orientation of regional foliation in the Yeongyang-Uljin area. 1st deformation produced regional foliation striking WNW and steeply dipping to the north, 2nd deformation locally change the strike of regional foliation into N-S direction, and 3rd and 4th deformations locally change dip-angle and dip-direction of regional foliation.