• 제목/요약/키워드: Si die

검색결과 164건 처리시간 0.023초

『실천이성비판』의 자기 사랑의 단절 의미로 읽어본 『맹자』의 사단(四端) (Eine Verstaendnis fuer die Si Dan(四端) in dem Mengtzu unter dem Gesichtspunkt der Bedeutung des Abbruchs der Selbstliebe in der Kriktik der praktischen Vernunft)

  • 황순우
    • 철학연구
    • /
    • 제116권
    • /
    • pp.465-484
    • /
    • 2010
  • 본 논문은 칸트의 "실천이성비판"에 도덕 법칙의 주체 개념 형성과 전개에 중요한 역할을 하는 자기 사랑의 단절이라는 의미를 "맹자(孟子)"의 사단(四端) 개념에 투영해서 사단을 이해해 보려는 것이다. 도덕 법칙의 주체에 대한 고찰에서는 가장 평범한 상식적인 사람이면 도덕 법칙의 주체가 될 수 있으며, 누구든지 도덕 법칙의 주체라면 자기 행복을 추구하는 자기 사랑의 원리를 단절하는 자임이 밝혀진다. 사단(四端)과 자기 사랑의 단절에 관한 고찰에서는 사단이 인간 존재를 규정하는 근거로 작용하고 사단의 의미가 자기 사랑의 원리에 대한 단절임이 드러난다. 자기 사랑의 원리가 개인주의를 좇는다면 그것을 단절하는 사단은 사회공동체를 지향하는 이상적인 도덕성으로 밝혀진다. 마지막으로 사단의 확충과 자기 사랑의 단절의 명령에 관한 고찰에서는 사단의 확충은 자기 사랑의 단절의 명령이고 이 명령은 강요된 것이 아니라 자율적인 것이어서 칸트뿐만 아니라 맹자에게도 인간의 자율성이 도덕 법칙의 근원임이 드러난다.

SKD61 금형강의 소착 반응층 두께에 미치는 Al-9wt%Si-0.3wt%Mg 합금의 Fe, Mn 영향 (Effect of Fe, Mn Contents of Al-9wt%Si-0.3wt%Mg Alloys on the Thickness of Die Soldering Reaction Layer for SKD61 Die Steel)

  • 김헌주;조치만;정창렬
    • 한국주조공학회지
    • /
    • 제29권4호
    • /
    • pp.169-175
    • /
    • 2009
  • Effect of iron and manganese contents on die soldering reaction has been studied in Al-9wt.%Si-0.3wt.%Mg alloy. Ternary ${\alpha}_{hcp}-Al_8Fe_2Si$ and ${\alpha}_{bcc}-Al_8Fe_2Si$ intermetallic compounds formed by interaction diffusion between Al-Si-Mg system alloy melt and SKD61 die steel surface. Thickness of soldering reaction layer in die steel surface decreased as Fe and Mn contents of the melts increased : When Fe content of Al-9wt.%Si-0.3wt.%Mg melts at constant 0.5wt%Mn content was 0.15wt.%, 0.45wt.% and 0.6wt.%, thickness of soldered layer of each alloy was $64.5{\mu}m,\;57.3{\mu}m$ and $46.9{\mu}m$ respectively. For Mn content of the alloy melts at constant 0.45wt.%Fe content was 0.30wt.%, 0.50wt.% and 0.70wt.%, thickness of soldered layer of each alloy was $66.1{\mu}m,\;57.3{\mu}m$ and $48.3{\mu}m$ respectively.

Al-9Si-0.3Mg 주조용 합금에서 Sludge 형성이 금형소착 반응층 두께에 미치는 영향 (Effect of Sludge Formation on the Thickness of Die Soldering Reaction Layer in Al-9Si-0.3Mg Casting Alloy)

  • 김헌주
    • 한국주조공학회지
    • /
    • 제30권2호
    • /
    • pp.76-82
    • /
    • 2010
  • Effect of reaction time and sludge formation on the thickness of die soldering reaction layer has been studied in Al-9Si-0.3Mg casting alloy. Ternary ${\alpha}_{bcc}-Al_8Fe_2Si$ and ${\alpha}_{hcp}-Al_8Fe_2Si$ intermetallic compounds formed at the interface of SKD61 tool steel by interaction diffusion of Al, Fe and Si atoms after 0.5hr and 6hr immersion time, respectively. Binary ${\eta}-Fe_2Al_5$ additionally formed at the interface of SKD61 tool steel after 10hr immersion time. Thickness of soldering reaction layer in die surface increased as immersion time increased from 0.5hr to 24hr. Sludge formation was ascertained in the samples which were immersed in the melts more than 10hr. Reaction of die soldering after sludge formation was more accelerated than that of before sludge formation due to a decrease in Fe content, followed by higher diffusion rate of Al in the melt by sludge formation.

다이캐스팅법에 의해 제조된 SiC 입자강화 알루미늄합금기 복합재료의 미세조직 및 인장특성 (Microstructure and Tensile Properties of $SiC_p$-reinforced Aluminum Alloy Composites Fabricated by Die Casting Method)

  • 이태원;이지환
    • 한국주조공학회지
    • /
    • 제17권4호
    • /
    • pp.385-392
    • /
    • 1997
  • The main objective of this study is to investigate the microstructure and tensile strength of $SiC_p$/Al alloy composites fabricated by die casting method. Die casting was performed using the preheated mold at the pouring temperature range of $620{\sim}750^{\circ}C$ under the pressure of $1,039 kgf/cm^2$. The low speed and a following high injection speed were 0.4 and 2.1 m/s, respectively. The microstructure of $SiC_p$/Al alloy composites fabricated by die casting method was found to be finer than that of composites fabricated by gravity casting. Also, SiC particulates were homogeneously distributed in refined Al matrix due to rapid solidification. The tensile strength of $SiC_p$/Al alloy composites fabricated by die casting method was found to be varied with cast temperature. The maximun tensile strength of $SiC_p$(10 vol.% and 20 vol.%)/Al alloy composites showed 380 MPa at the cast temperature of $750^{\circ}C$ and 363 MPa at the cast temperature of $700^{\circ}C$, respectively.

  • PDF

Al 합금과 STD61강의 소착에 미치는 첨가원소 Fe, Mn의 영향 (Effects of Fe, Mn Contents on the Al Alloys and STD61 Steel Die Soldering)

  • 김유미;홍성길;최세원;김영찬;강창석
    • 한국재료학회지
    • /
    • 제22권4호
    • /
    • pp.169-173
    • /
    • 2012
  • Recently, various attempts to produce a heat sink made of Al 6xxx alloys have been carried out using die-casting. In order to apply die-casting, the Al alloys should be verified for die-soldering ability with die steel. It is generally well known that both Fe and Mn contents have effects on decreasing die soldering, especially with aluminum alloys containing substantial amounts of Si. However, die soldering has not been widely studied for the low Si aluminum (1.0~2.0wt%) alloys. Therefore, in this study, an investigation was performed to consider how the soldering phenomena were affected by Fe and Mn contents in low Si aluminum alloys. Each aluminum alloy was melted and held at $680^{\circ}C$. Then, STD61 substrate was dipped for 2 hr in the melt. The specimens, which were air cooled, were observed using a scanning electron microscope and were line analyzed by an electron probe micro analyzer. The SEM results of the dipping soldering test showed an Al-Fe inter-metallic layer in the microstructure. With increasing Fe content up to 0.35%, the Al-Fe inter-metallic layer became thicker. In Al-1.0%Si alloy, the additional content of Mn also increased the thickness of the inter-metallic layer compared to that in the alloy without Mn. In addition, EPMA analysis showed that Al-Fe inter-metallic compounds such as $Al_2Fe$, $Al_3Fe$, and $Al_5Fe_2$ formed in the die soldering layers.

Al-10.5wt%Si-2wt%Cu 다이 캐스팅용 2차 지금의 기계적 특성과 전기전도도에 미치는 Sr 양과 유지시간의 영향 II (The Effect of Sr Addition and Holding Time on Mechanical Property and Electrical Conductivity of Al-10.5%Si-2%Cu Secondary Die-casting Alloys)

  • 신상수;김명용;염길용
    • 한국주조공학회지
    • /
    • 제30권6호
    • /
    • pp.205-209
    • /
    • 2010
  • This study evaluates the influence of strontium addition and holding time on mechanical properties for Al-10.5wt%Si-2wt%Cu secondary die-casting alloy and the measured electrical conductivity of modified alloys. A general improvement in the mechanical properties of the alloy was observed after adding the strontium. Ultimate tensile strength, elongation and electrical conductivity of modified alloys were improved by increasing strontium content and holding time. From these results, the optimal strontium content and holding time were identified on the mechanical properties of Al-10.5wt%Si-2wt%Cu secondary die-casting alloys.

3차원 유한요소해석을 이용한 스크롤 로터의 단조 금형 설계 (The Forging Die Design of Scroll Rotor by using the 3-D FEM Analysis)

  • 이영선;이정환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.111-115
    • /
    • 2001
  • The die design for hot forging was investigated for manufacturing precisely of scroll rotor made with Al-Si alloy. A scroll rotor is a non-symmetric 3-D shape part, having involute wraps. Disk-shaped billet of Al-Si alloy was extruded to wraps and boss simultaneously. Because the involute wraps is not axi-symmetric, the flow velocity and the stress of die is very much different at each portion. Moreover, the die in wraps portion is a cantilever beam and fractured. In this paper, the analysis of forming and die stress is investigated using the FEM tool, DEFORM-3D. The tensile strength of tool material is $250kg/mm^{2}$. From the analysis results, we can find the maximum principal stress of die is over the fracture strength and redesign the die. The prototype forged part is superior in net shaping and microstructure.

  • PDF

냉간 인서트 금형용 Mo, V 무첨가 저합금 주강의 주요 성질에 미치는 Si함량의 영향 (The Effect of Si Content on Important Properties of A Mo and V Free Low Alloy Cast Steel for The Insert of Cold Pressing Die)

  • 신제식;김봉환;문병문
    • 한국주조공학회지
    • /
    • 제29권2호
    • /
    • pp.70-77
    • /
    • 2009
  • The aim of this study was to develop a Mo and V free low alloy cast steel materials, enabling the significant cost- and time-savings in manufacturing and maintaining the insert of cold pressing die without impairment of the important properties. For this purpose, the effects of Si content on combinations of important properties such as hardness, hardenability, and weldability, and strength were systematically investigated. In order to evaluate the applicability as the insert of cold pressing die, the mechanical properties were measured after spheroidization annealing, quenching and tempering, and flame hardening heat treatments, respectively. After the Q/T and F.H. treatments, the developed 0.8${\sim}$1.6%Si containing Mo and V free low alloy cast steels showed excellent matrix strengthening effect, hardenability, and weldability, fulfilling the industrial criterion of the mechanical properties for automobile cold pressing die insert.

Al-Mg계 합금과 Al-Si계 합금의 다이캐스팅 응고과정의 차이 (Difference in Solidification Process between Al-Mg Alloy and Al-Si Alloy in Die-Casting)

  • 최세원;김영찬;조재익;강창석;홍성길
    • 한국재료학회지
    • /
    • 제22권2호
    • /
    • pp.82-85
    • /
    • 2012
  • The effect of the alloy systems Al-Mg alloy and Al-Si alloy in this study on the characteristics of die-casting were investigated using solidification simulation software (MAGMAsoft). Generally, it is well known that the casting characteristics of Al-Mg based alloys, such as the fluidity, feedability and die soldering behaviors, are inferior to those of Al-Si based alloys. However, the simulation results of this study showed that the filling pattern behaviors of both the Al-Mg and Al-Si alloys were found to be very similar, whereas the Al-Mg alloy had higher residual stress and greater distortion as generated due to solidification with a larger amount of volumetric shrinkage compared to the Al-Si alloy. The Al-Mg alloy exhibited very high relative numbers of stress-concentrated regions, especially near the rib areas. Owing to the residual stress and distortion, defects were evident in the Al-Mg alloy in the areas predicted by the simulation. However, there were no visible defects observed in the Al-Si alloy. This suggests that an adequate die temperature and casting process optimization are necessary to control and minimize defects when die casting the Al-Mg alloy. A Tatur test was conducted to observe the shrinkage characteristics of the aluminum alloys. The result showed that hot tearing or hot cracking occurred during the solidification of the Al-Mg alloy due to the large amount of shrinkage.

스퀴즈 병용 다이캐스팅법에 의한 Al-12%Si 합금의 결함제어에 관한 연구 (A study on Defect Control of Al-12%Si Alloy by Partial Squeeze Die Casting Method)

  • 김억수;김용현;이광학;김흥식
    • 한국주조공학회지
    • /
    • 제15권4호
    • /
    • pp.377-387
    • /
    • 1995
  • Partial squeeze die casting is a special die casting process which combines squeeze technique to conventional die casting. The influence of squeeze pressure $(1500-3000kg/cm^2)$ and time-lags(0.5-2.0sec) on defect control, density and microstructure of ADC12 alloy die casts has been studied by appling partial squeeze die casting to air compressure front housing production. Defect free, maximum density of $2.736kg/cm^3$ with sound microstructure of ADC12 alloy die cast has been obtained by partial squeeze die casting technique at the pressure of $2000-2500kg/cm^2$ and time-lags of 1.0-2.0sec.

  • PDF