• Title/Summary/Keyword: Si Content

Search Result 1,966, Processing Time 0.031 seconds

Fabrication and Mechanical Properties of $SiC_p/Al$ Composites by Pressureless Infiltration Technique (무가압침투법에 의한 $SiC_p/Al$ 복합재료의 제조 및 기계적 특성)

  • Jin, H.G.;Oh, M.S.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.74-81
    • /
    • 2001
  • The infiltration behavior of molten Al-alloy, microstructures, hardness, and the interfacial reactions of $SiC_p/Al$ composites fabricated by the pressureless infiltration technique were investigated. It was made clear that both the weight fraction of SiC reinforcement and additive Mg content considerably influenced on the infiltration behavior of the molten Al-alloy matrix. Complete infiltration of molten Al-alloy achieved under the conditions that weight fraction of SiC content is more than 30wt%, and additive Mg content is more than 9wt%. Interfacial region of Al-alloy matrix and SiC reinforcement phase, $Mg_2Si$ was formed by the reaction between Mg and SiC. Another reaction product AlN was also formed by the reaction between Al-alloy matrix and gas atmosphere nitrogen.

  • PDF

Study on the effect of silicon content on matrix of hypo-eutectic Cr alloyed cast iron (아공정(亞共晶)Cr 주철(鑄鐵)의 기지조직(基地組織)에 미치는 Si의 영향(影響))

  • Kim, Sug-Won;Lee, Oh-Yeon;Kim, Dong-Keon
    • Journal of Korea Foundry Society
    • /
    • v.4 no.2
    • /
    • pp.96-101
    • /
    • 1984
  • The morphologies of eutectic cell formed during solidification affect on the mechanical properties in high Cr cast iron. In order to investigate the influence of Si on the structure, five kinds of specimen containing 16.42% Cr with varying amount of Si (0.51%, 1.17%, 2.22%, 2.71%, 3.56%) were poured into shell mould preheated $330^{\circ}C$ at $1510^{\circ}C$. The effect of Si on matrix in hypo-eutctic Cr cast iron (2.48% C, 16.42%) were studied through its mechanical tests and observation of microstructure using of metallurgical microscope, EPMA, SEM and Image analyzer systematically. The results obtained from the above studies are as follows: 1. Because of ${\Delta}T$ decreasing with increasing Si content, the morpologies of colony change into uniform bar-type carbide from plate-type ones, moreover eutectic colony size (Ew) becomes narrow and spacing of carbide wider. 2. As Si content increases, the amount of carbides also increases and most of Cr were dissolved in carbides while Si in matrix. 3. The hardness, tensile strength and wear resistance were increasing while impact value decreased with increasing Si content. 4. In fracture section, small amount of dimple pattern was observed in less than 1.17% Si but more than 2.22% Si river pattern was presented.

  • PDF

$\alpha$ to $\beta$ Phase Transformation of $\alpha$-Si3N4 Whisker ($\alpha$-질화규소 Whisker의 $\alpha$/$\beta$ 상변태)

  • 박지연;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.5
    • /
    • pp.502-508
    • /
    • 1988
  • The $\alpha$ to $\beta$ phase transformation of $\alpha$-Si3N4 whisker and related microstructural changes have been investigated. When only $\alpha$-Si3N4 whisker was heat treated in the range 1650~175$0^{\circ}C$, the $\alpha$ to $\beta$ phase transformation occured. In this case, it eas suggested that the oxygen content in $\alpha$-Si3N4 whisker affected the transformation behavior. Although $\alpha$-Si3N4 whisker with Si was heat treated under the same condition, however, the variation of $\beta$- fraction had a similar tendency with heat treating time. Therfore, it was considered that the oxygen content in $\alpha$-Si3N4 whisker affected the transformation behavior dominently rather than the content of added Si. The added $\beta$ phase did not affect the transformation behaviro of $\alpha$-Si3N4 whisker.

  • PDF

Reinforcing Performance of Networked Silicas in Silica-filled Chloroprene Rubber Compounds

  • Ryu, Changseok;Yang, Jae-Kyoung;Park, Wonhyeong;Kim, Sun Jung;Kim, Doil;Seo, Gon;Kim, Wook-Soo;Ahn, Ki Woong;Kim, Beak Hwan
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.40-53
    • /
    • 2019
  • The physical properties of chloroprene rubber (CR) compounds reinforced with networked silicas were investigated by comparing them to those reinforced with conventional silica to observe the effect of the organic connection bonds combining silica particles on their cure, tensile, and aging performance. The introduction of networked silica to CR increase in silica content to 80 phr in rubber, while the content of conventional silica was limited to 60 phr. The CR compounds reinforced with networked silica showed higher resistance to combustion. The gradual increases in delta torque, Mooney viscosity, and modulus of silica-filled CR compounds with silica content were mainly attributed to the specific interaction between the chlorine atoms of CR and the hydroxyl groups of silica. The CR compounds reinforced with networked silica showed low compression set and heat build-up and maintained their high modulus even after thermal, oil, and ozone aging.

Synthesis and Mechanical Properties of nc-TiN/a-Si$_3$N$_4$ Nanocomposite Coating Layer (나노복합체 nc-TiN/a-Si$_3$N$_4$ 코팅막의 합성 및 기계적 성질)

  • 김광호;윤석영;김수현;이건환
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.3
    • /
    • pp.133-140
    • /
    • 2002
  • The Ti-Si-N coating layers were synthesized on SKD 11 steel substrate by a DC reactive magnetron co-sputtering technique with separate Ti and Si targets. The high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) analyses for the coating layers revealed that microstructure of Ti-Si-N layer was nanocomposite, consisting of nano-sized TiN crystallites surrounded by amorphous $Si_3$$N_4$ phase. The highest hardness value of about 39 GPa was obtained at the Si content of ~11at.%, where the microstructure had fine TiN crystallites (about 5nm in size) dispersed uniformly in amorphous matrix. As the Si content in Ti-Si-N films increased, the TiN crystallites became from aligned to randomly oriented microstructure, finer, and fully penetrated by amorphous phase. Free Si appeared in the layers due to the deficit of nitrogen source at higher Si content. Friction coefficient and wear rate of the Ti-Si-N coating layer significantly decreased with increase of relative humidity. The self-lubricating tribe-layers such as $SiO_2$ or (OH)$Si_2$ seemed to play an important role in the wear behavior of Ti-Si-N film against steel.

Effect of Si Addition on Microstructure, Mechanical Properties and Thermal Conductivity of the Extruded Al 6013 Alloy Systems

  • Yoo, Hyo-Sang;Kim, Yong-Ho;Lee, Byoung-Kwon;Ko, Eun-Chan;Son, Hyeon-Taek
    • Korean Journal of Materials Research
    • /
    • v.32 no.10
    • /
    • pp.403-407
    • /
    • 2022
  • This research investigated the effect of Si addition on the microstructure, mechanical properties, electric and thermal conductivity of as-extruded Al 6013 alloys. As the content of Si increased, the area fraction of the second phase increased. As the Si content increased, the average grain size decreased remarkably, from 182 (no Si addition) to 142 (1.5Si), 78 (3.0Si) and 77 ㎛ (4.5Si) due to dynamic recrystallization by the dispersed second particles in the aluminum matrix during the hot extrusion. As the Si content increased, the yield strength and ultimate tensile strength increased. The maximum values of yield strength and ultimate tensile strength were 224 MPa and 103 MPa for the 6013-4.5Si alloy. As the amount of Si added increased, the electrical and thermal conductivity decreased. The electrical and thermal conductivity of the Al6013-4.5Si alloy were 44.0 % IACS and 165.0 W/mK, respectively. The addition of Si to Al 6013 alloy had a significant effect on its thermal conductivity and mechanical properties.

Improvement of Wear Resistance and Formation of Si Alloyed Layer on Aluminum Alloy by PTA Process (PTA법에 의한 Al 합금표면의 Si 합금층 형성과 내마모성 개선)

  • ;;松田福久;中田一博
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.134-143
    • /
    • 1997
  • The formation of thick alloyed layer with high Si content have been investigated on the surface of Al alloy (A5083) plate by PTA process with Si powder. Hardening characteristics and wear resistance of alloyed layer was examined in relation to the microstructure of alloyed layer. Thick hardened layer in mm-order thickness on the surface of A5083 plate can be formed by PTA process with wide range of process condition by using Si powder as alloying element because of eutectic reaction of Al-Si binary alloy. High temperature and rapid solidification rate of molten pool, which are features of PTA process, enable the formation of high Si content alloyed layer with uniform distribution of fine primary Si paticle. High plasma arc current was beneficial to make the alloyed layer with smooth surface appearance in wide range of powder feeding rate, because enough volume of molten pool was necessary make alloyed layer. Uniform dispersion of fine primary Si particle with about 30${\mu}{\textrm}{m}$ in particle size can be obtained in layer with Si content ranging from 30 to 50 mass %. Hardness of alloyed layer increased with increasing Si content, but increasing rate of hardness differed with macrostructure of alloyed layer. Wear resistance of alloyed layer depended on $V_{si}$(volume fraction of primary Si) and was remarkably improved to two times of base metal at 20-30% $V_{si}$ without cracking, but no more improvement was obtained at larger $V_{si}$.

  • PDF

Prediction of Solidification Path in Al-Si-Fe Ternary System and Experimental Verification (Al-Si-Fe 3원계 조성의 응고경로 예측 및 실험적 검증)

  • Lee, Sang-Hwan;Lee, Sang-Mok
    • Journal of Korea Foundry Society
    • /
    • v.30 no.1
    • /
    • pp.34-45
    • /
    • 2010
  • The effects of alloy elements and cooling rate on the solidification path and the formation behavior of $\beta$ phase in Fe-containing Al-Si alloys were studied based on the thermodynamic analysis and the pertinent experiments. The thermodynamic calculation was systematically performed by using Thermo-Calc program. For the thermodynamic analysis in high alloy region of Al-Si-Fe ternary system, a thermodynamic database for Thermo-Calc was correctly updated and revised by the collected up-to-date references. For the thermodynamic-based prediction of various solidification paths in Fe-containing Al-Si system, liquidus projection of Al-Si-Fe ternary system, including isotherms, invariant, monovariant, bivariant reactions and equilibrium temperatures, was calculated and analyzed as functions of composition and temperature. The calculated results were compared to the experimental results using various casting specimens. In order to analyze various solidification sequences as functions of Si and Fe content, 4 representative alloy compositions, low Fe content in both low and high Si contents and high Fe content again in both low and high Si contents, were designed in this study. For better understanding of the influence of cooling rate on the formation behavior of $\beta$ phase, 4 alloys were solidified under furnace and rapidly cooled conditions. Cooling curves of solidified alloys were recorded by thermal analysis. Various important solidification events were evaluated using the first derivative-cooling curves. Microstructures of the casting samples were studied by the combined analysis of optical microscopy (OM) and scanning electron microscopy (SEM).

Synthesis and Characteristics of New Quaternary Superhard Ti-Mo-Si-N Coatings (새로운 고경도 Ti-Mo-Si-N 코팅막의 합성 및 기계적 특성)

  • Jeon, Jin-Woo;Hong, Seung-Gyun;Kim, Kwang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.6
    • /
    • pp.245-249
    • /
    • 2006
  • In this study, ternary Ti-Mo-N and new quaternary Ti-Mo-Si-N coatings were synthesized on steel substrates(AISI D2) and Si wafers by a hybrid coating system of arc ion plating (AIP) using Ti target and d.c. magnetron sputtering technique using Mo and Si targets in $N_2/Ar$ gaseous mixture. Ternary Ti-Mo-N coatings were substitutional solid-solution of (Ti, Mo)N and showed maximum hardness of approximately 30 GPa at the Mo content of ${\sim}10$. %. The Ti-Mo-Si-N coating with the Si content of 8.8 at. % was a composite consisting of fine (Ti, Mo)N crystallites and amorphous $Si_3N_4$ phase. The hardness of the Ti-Mo-Si(8.8 at. %)-N coatings exhibited largely increased hardness value of ${\sim}48$ GPa due to the microstructural evolution to the fine composite microstructure and the refinement of (Ti, Mo)N crystallites. The average friction coefficient of the Ti-Mo-Si-N coatings largely decreased with increase of Si content. The microstructures of Ti-Mo-Si-N coatings were investigated with instrumental analyses of XRD, XPS, and HRTEM in this work.

Mechanical and Tribological Properties of Si-SiC-Graphite Composites (Si-SiC-Graphite 복합재료의 기계적 물성과 마찰 마모 특성)

  • 김인섭;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.6
    • /
    • pp.643-652
    • /
    • 1995
  • Si-SiC-graphite composites were developed by incorporating solid lubricant graphite into Si-SiC, in the light of improving tribological properties of Si-SiC ceramics. Si-SiC-graphite composites were fabricated by infilterating silicon melt into the mixture of α-SiC, carbon black and graphite powder at 1750℃ under 3 Torr. The particle size of graphite was in the range of 150 to 500㎛, and the loading content of graphite was 0, 20, 25, 30, 35 vol% in the mixture of α-SiC and carbon black. The mechanical and tribological properties of this composites were studied. The density, hardness, flexural strength, compressive strength and Young's modulus were decreased with increasing of graphite content. An additiion of solid-lubricant graphite up to 30 vol% has improved tribological properties of Si-SiC ceramics without considerable degradation of mechanical properties.

  • PDF