• Title/Summary/Keyword: Si/Al 비

Search Result 541, Processing Time 0.032 seconds

Study on the Resistor Formation using an $Al_2O_3$ Etch-Stop Layer in DRAM (DRAM에서 $Al_2O_3$를 식각 정지막으로 이용한 레지스터 형성에 관한 연구)

  • Park, Jong-Pyo;Kim, Gil-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.153-156
    • /
    • 2005
  • 원자층 증착 (atomic layer deposit : ALD) 방식으로 증착한 $Al_2O_3$의 건식식각 특성을 연구하였다. 전자 싸이클로트론 공진 (electron cyclotron resonance : ECR) 방식의 건식식각장치에서 source power, bias power, 압력 그리고 $Cl_2$ 가스를 변수로 하여 $Al_2O_3$의 식각속도와 Poly-Si 의 $Al_2O_3$에 대한 선택비를 측정하였다. bias power가 감소할수록 그리고 압력이 증가할수록 $Al_2O_3$의 식각속도는 감소하였고 Poly-Si 의 $Al_2O_3$에 대한 선택비는 증가하였다. 이 특성을 이용하여 TiN/$Al_2O_3$/Poly-Si 구조의 캐패시터와 Periphery 회로영역의 레지스터를 $Al_2O_3$를 식각 정지막으로 이용하여 구현하였다.

  • PDF

Effect of metal oxides on the types of SiO$_2$ Phase of vitreous porcelain body (금속 산화물이 도자기 소지중 SiO$_2$상 생성에 미치는 영향)

  • 김윤주
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.658-664
    • /
    • 1997
  • The effect of metal oxides($K_2O, MgO, CaO,Al_2O_3$, and $TiO_2$) on the kinds of pure $SiO_2$ phase, and $SiO_2$ phases in the composition of vitreous porcelain body was investigated. Also, the effect of the ratio $SiO_2$ to $Al_2O_3$ in the composition of porcelain body with stabilized of cristobalite phase was investigated. In the case of the addition of $K_2O, MgO, CaO, Al_2O_3$, and $TiO_2$ to pure $SiO_2$, the major phase was $\alpha$-cristobalite, $\alpha$-cristobalite, $\alpha$-quartz, $\alpha$-quartz and amorphous, respectively. As the ratio of $SiO_2$ to $Al_2O_3$ in the composition of porcelain body was decreased, the stabilization of cristobalite phase was promoted and only the critical value of $SiO_2/Al_2O_3$ ratio that stabilizing the cristobalite phase in it was 68.10/22.75. The addition of $K_2$O, MgO, CaO,Al_2O_3$, and $TiO_2$ to the composition of porcelain body stabilized already did not affect on the formation of $\alpha$-cristobalite phase which degraded the thermal properties of porcelain body, and suppressed the formation of a, $\beta$-cristobalite.

  • PDF

Probing Atomic Structure of Quarternary Aluminosilicate Glasses using Solid-state NMR (다성분계 현무암질 비정질 규산염의 원자 구조에 대한 고상핵자기 공명 분광분석연구)

  • Park, Sun-Young;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.343-352
    • /
    • 2009
  • High-resolution Solid-state NMR provides element specific and quantitative information and also resolves, otherwise overlapping atomic configurations in multi-component non-crystalline silicates. Here we report the preliminary results on the effect of composition on the structure of CMAS (CaO-MgO-$Al_2O_3-SiO_2$) silicate glasses, as a model system for basaltic magmas, using the high-resolution 1D and 2D solid-state NMR. The $^{27}Al$ MAS NMR spectra for the CMAS silicate glasses show that four-coordinated Al is predominant, demonstrating that $Al^{3+}$ is network forming cation. The peak position moves toward lower frequency about 4.7 ppm with increasing $X_{MgO}$ due to an increase in $Q^4$(4Si) fraction with increasing Si content, indicating that Al are surrounded only by bridging oxygen. $^{17}O$ MAS NMR spectra for $CaAl_2SiO_6$ and $CaMgSi_2O_6$ glasses qualitatively suggest that NBO fraction in the former is smaller than that in $CaMgSi_2O_6$ glasses. As $^{17}O$ 3QMAS NMR spectrum of model quaternary aluminosilicate glass resolved distinct bridging and non-bridging oxygen environments, atomic structure for natural magmas can also be potentially probed using high-resolution 3QMAS NMR.

Solid State $^{27}Al$, $^{29}Si$ MAS NMR Spectroscopic Studies on Crystallization of ZSM-5 Synthesized at Low Temperature and Atomospheric Pressure (저온상압에서 합성된 Na,TPA-ZSM-5의 결정화에 관한 Solid State $^{27}Al$$^{29}Si$ MAS NMR 분광학적 고찰)

  • Yun, Young Ja;Ha, Jae Mok
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.10
    • /
    • pp.656-662
    • /
    • 1996
  • Using low temperature and atmospheric pressure method, we synthesized Na, TPA-ZSM-5 with Si/Al ratio of about 100. We employed 27Al and 29Si MAS NMR spectroscopy and FT-IR to investigate the crystallization process as a function of time. The chemical shift depends on the initial composition of reactants and changes during the course of synthesis different from those reported by others earlier. However, the chemical shift of our final product showed in the range of typical ZSM-5. And the defect site was removed by the calcine. From XRD and SEM data, the formation of ZSM-5 was also confirmed.

  • PDF

Mechanical Properties and Castabilities of Al-12Mg-5.5Zn-xSi Alloys

  • Kim, Jeong-Min;Sung, Ki-Dug;Jun, Joong-Hwan;Kim, Ki-Tae;Jung, Woon-Jae
    • Journal of Korea Foundry Society
    • /
    • v.24 no.6
    • /
    • pp.340-346
    • /
    • 2004
  • The plan for obtaining a good combination of strength and castability appeared feasible and the following observations were made. 1. In Al-12Mg-6.6Zn-xSi alloys, more primary $Mg_2Si$ phase formed with reduced $Al_3Mg_2$ phase, as Si content is necessary for an effective solution heat treatment because the solidus temperature is very low silicon contents. 2. A high tensile strength could be obtained in the heat-treated Al-12Mg-5.5Zn-5Si alloy attributed in the heat-treated Al-12Mg-5.5Zn-5Si alloy attributes to fine $MgZn_2$ particles that precipitated uniformly in the matrix. 3. Al-12Mg-5.5Zn-Si alloys showed excellent casting capabilities such as hot cracking resistance and fluidity compared to the reference commercial alloys. 4. The wear resistance of Al-12Mg-5.5Zn-5Si alloy was superior to that of A7075 alloy, and even higher resistance is expected if the morphology and size of primary $Mg_2Si$ phase is carefully controlled.

Analysis of drawing process of the Al-Si wire using FEM (유한요소해석을 이용한 Al-Si 선재의 인발 공정해석)

  • Hwang W. H.;Kim B. M.;Kim W. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.89-92
    • /
    • 2004
  • This paper is concerned with the drawing process of Al-Si wire. In this study, the finite-element model established in previous work was used to analyze the effects of various forming parameters, which included the reduction in area, the semi-die angle, the aspect ratio and the inter-particle spacing of the Si in drawing processes. The finite-element results gave the consolidation condition. From the results of analysis, the effects of each forming parameter were determined. It is possible to obtain the important basic data which can be guaranteed in the fracture prevention of Al-Si wire by using FEM simulation.

  • PDF

R-Curve Behavior and Mechanical Properties of Al2O3 Composites Containing SiC and TiC Particles (SiC와 TiC 입자를 함유하는 Al2O3 입자복합체의 균열저항거동과 기계적 성질)

  • Na, Sang-Woong;Lee, Jae-Hyung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.413-419
    • /
    • 2002
  • Particulate composites of $Al_2O_3$/TiC/SiC, $Al_2O_3$/TiC and $Al_2O_3$/SiC have been fabricated by hot pressing and their R-curve behaviors and mechanical properties were investigated. $Al_2O_3$ containing 30 vol% TiC particles showed higher toughness by 8% than that for monolithic alumina and its fracture strength was increased significantly by approximately 30%. On the other hand, the addition of 30 vol% SiC of $3{\mu}m$ in $Al_2O_3$ decreased the fracture strength slightly but induced a rising R-curve behavior owing to the strong crack bridging of SiC particles. In case of $Al_2O_3$/TiC/SiC, arising R-curve behavior was also observed and the fracture toughness reached 6.6 MPa${\cdot}\sqrt{m}$ at the crack length of $1000{\mu}m$, which was lower than that of $Al_2O_3$/SiC, however, while the fracture strength was higher by about 20%. The fracture toughness seemed to be decreased as smaller TiC particles roughened the SiC interface and pullout of the SiC particles for crack bridging became less active.

The Properties of GaN Grown by BVPE Method on the Si(111) Substrate with Pre-deposited Al Layer (Al 박막이 증착 된 Si(111) 기판 위에 HVPE 방법으로 성장한 GaN의 특성)

  • Shin Dae Hyun;Baek Shin Young;Lee Chang Min;Yi Sam Nyung;Kang Nam Lyong;Park Seoung Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.201-206
    • /
    • 2005
  • In this work, we tried to improve the fabrication process in HVPE (Hydride Vapor Phase Epitaxy) system by using Si(111) substrate with pre-deposited Al layer. PL measurements was done for samples with and without pre-deposited Al on Si and it was also examined the dependence of the optical characteristic properties on AlN buffer thickness for GaN/AIN/Al/Si. A sample with thin Al nucleation layer on Si substrate reveals a better optical property than the other. And it suggests that the thickness for AlN buffer layer with thin Al nucleation layer on Si(111) substrate is most proper about $260{\AA}$ to grow GaN in HVPE system. The surface morphology of GaN clearly shows the hexagonal crystallization. The XRD pattern showed strong peak at GaN{0001} direction.

Solid-state reaction kinetics for the formation of mullite($3Al_2O_3{\cdot}2SiO_2$) from amorphous $SiO_2$ and ${alpha}-Al_2O_3$ (비정질 $SiO_2$${alpha}-Al_2O_3$부터 Mullite를 합성하기 위한 고체상태 반응속도)

  • 김익진;곽효섭;고영신
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.332-341
    • /
    • 1998
  • Reaction kinetics for the solid - state reaction of ${\alpha}-Al_2O_3$with amorphous $SiO_2$to produce mullite ($3Al_2O_3;{cdot};2SiO_2$) was studied in the temperature range of 1450~$1480^{\circ}C$. Rate of kinetic reaction were determined by using $SiO_2$- coated $Al_2O_3$ compact containing 28.16 wt.% $SiO_2$and heating the reactant mixtures in MgO at definite temperature for various times. Amount of products and unreacted reactants were determined by X-ray diffractometry. Data from the volume fraction and ratio of peak intensities of mullite indicated that the reaction of ${\alpha}-;Al_2O_3$ with $SiO_2$to form $3Al_2O_3\;{\cdot}\;2SiO_2$ start between 1450 and $1480^{\circ}C$. The activation energy for solid-state reaction was determined by using the Arrhenius equation; The activation energy was 31.9 kJ/mol.

  • PDF

Age-Hardening Behavior of SiCp Reinforced 6061 Aluminum Alloy Composites (SiCp/6061Al합금복합재료의 시효거동)

  • An, Haeng-Geun;Yu, Jeong-Hui;Kim, Seok-Won;U, Gi-Do
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.793-798
    • /
    • 2000
  • The age-hardening behavior of unreinforced 6061 Al alloy and SiCp/6061 Al alloy composites reinforced with different size of SiC particle (average diameter ; 0.7$\mu\textrm{m}$ and 7.0$\mu\textrm{m}$) was investigated by hardness measurement, calorimetric technique and transmission electron microscopy. At 17$0^{\circ}C$ isothermal aging treatment, the peak aging time of 0.7$\mu\textrm{m}$SiCp/6061Al alloy composite and 7.0$\mu\textrm{m}$SiCp/6061Al alloy composite is shorter than that of unreinforced 6061Al alloy, and the aging of 7.0$\mu\textrm{m}$SiCp/6061Al alloy composite is accelerated more than that of 0.7$\mu\textrm{m}$SiCp/6061Al alloy composite. This acceleration is due to the increase of dislocation density by the compositeness with SiCp and the SiC particle size. In the peak aged condition, the major strengthening phase of these materials is intermediate $\beta$ phase(Mg$_2$Si), and the activation energy for the formation of $\beta$ phase is considerably decreased by the compositeness with SiCp and the increasing of SiC Particle site.

  • PDF