• Title/Summary/Keyword: Shunt compensation

Search Result 104, Processing Time 0.027 seconds

Optimal Shunt Compensation for Improving Voltage Stability and Transfer Capability in Metropolitan Area of the Korean Power System

  • Choi, YunHyuk;Lee, Byongjun;Kim, TaeKyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1502-1507
    • /
    • 2015
  • This paper deals with shunt compensation to eliminate voltage violation and enhance transfer capability, which is motivated towards implementation in the Korean power system. The optimal shunt compensation algorithm has demonstrated its effectiveness in terms of voltage accuracy and reducing the number of actions of reactive power compensating devices. The main shunt compensation devices are capacitor and reactor. Effects of control devices are evaluated by cost computations. The control objective at present is to keep the voltage profile of a key bus within constraints with minimum switching cost. A robust control strategy is proposed to make the control feasible and optimal for a set of power-flow cases that may occurs important event from system. Case studies with metropolitan area of the Korean power system are presented to illustrate the method.

Comparative Study on Transient Stability Improving Capability of Series and Shunt Compensation (비용함수에 의한 직병렬보상장치의 과도안정도 향상 특성 비교)

  • Choi, Kyu-Hyoung;Jeoug, Chang-Yang;Oh, Tae-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.655-657
    • /
    • 1996
  • The objective of this paper is to compare the series and shunt approaches of controlled reactive power compensation to improve power system transient stabilities. Including main circuit considerations of series and shunt compensators, application aspects are thought to have major impacts on efficiency and economy of the installation of the compensators. The concept is studied by means of EMTP simulations on one machine-Infinite Bus Test System which consists of a 612MVA steam turbin generator and transformer and double circuit 345KV transmission line. Idealized dynamic models of Thyristor Controlled Series Compensation and Shunt Compensation are used for the comparative study of the series and shunt compensation approach to damp power system oscillations.

  • PDF

Control Strategy for Selective Compensation of Power Quality Problems through Three-Phase Four-Wire UPQC

  • Pal, Yash;Swarup, A.;Singh, Bhim
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.576-582
    • /
    • 2011
  • This paper presents a novel control strategy for selective compensation of power quality (PQ) problems, depending upon the limited rating of voltage source inverters (VSIs), through a unified power quality conditioner (UPQC) in a three-phase four-wire distribution system. The UPQC is realized by the integration of series and shunt active power filters (APFs) sharing a common dc bus capacitor. The shunt APF is realized using a three-phase, four-leg voltage source inverter (VSI), while a three-leg VSI is employed for the series APF of the three-phase four-wire UPQC. The proposed control scheme for the shunt APF, decomposes the load current into harmonic components generated by consumer and distorted utility. In addition to this, the positive and negative sequence fundamental frequency active components, the reactive components and harmonic components of load currents are decomposed in synchronous reference frame (SRF). The control scheme of the shunt APF performs with priority based schemes, which respects the limited rating of the VSI. For voltage harmonic mitigation, a control scheme based on SRF theory is employed for the series APF of the UPQC. The performance of the proposed control scheme of the UPQC is validated through simulations using MATLAB software with its Simulink and Power System Block set toolboxes.

Harmonic Current Compensation based on Three-phase Three-level Shunt Active Filter using Fuzzy Logic Current Controller

  • Salim, Chennai;Benchouia, M.T.;Golea, A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.595-604
    • /
    • 2011
  • A three-phase three-level shunt active filter controlled by fuzzy logic current controller which can compensate current harmonics generated by nonlinear loads is presented. Three-level inverters and fuzzy controllers have been successfully employed in several power electronic applications these past years. To improve the conventional pwm controller performance, a new control scheme based on fuzzy current controller is adopted for three-level (NPC) shunt active filter. The scheme is designed to improve compensation capability of APF by adjusting the current error using a fuzzy rule. The inverter current reference signals required to compensate harmonic currents use the synchronous reference detection method. This technique is easy to implement and achieves good results. To maintain the dc voltage across capacitor constant and reduce inverter losses, a proportional integral voltage controller is used. The simulation of global system control and power circuits is performed using Matlab-Simulink and SimPowerSystem toolbox. The results obtained in transient and steady states under various operating conditions show the effectiveness of the proposed shunt active filter based on fuzzy current controller compared to the conventional scheme.

Design of DC Side Voltage and Compensation Analysis of THD for Shunt Power Quality Controller under System Load of Rectifier with R-L Load

  • Zhao, Guopeng;Han, Minxiao
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.30-40
    • /
    • 2015
  • For a shunt power quality controller (SPQC) the DC side voltage value which is closely related to the compensation performance is a significant parameter. Buy so far, very little discussion has been conducted on this in a quantitative manner by previous publications. In this paper, a method to design the DC side voltage of SPQC is presented according to the compensation performance in the single-phase system and the three-phase system respectively. First, for the reactive current and the harmonic current compensation, a required minimal value of the DC side voltage with a zero total harmonic distortion (THD) of the source current and a unit power factor is obtained for a typical load, through the equivalent circuit analysis and the Fourier Transform analytical expressions. Second, when the DC side voltage of SPQC is lower than the above-obtained minimal value, the quantitative relationship between the DC side voltage and the THD after compensation is also elaborated using the curve diagram. Hardware experimental results verify the design method.

The Effect Analysis of Series and Shunt Compensation Schemes for EHV Long Transmission Lines (직병렬보상방법에 의한 초고압장거리송전선로의 보상효과분석)

  • Chung, J.K.;Kang, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.224-227
    • /
    • 1997
  • This study discuss two subjects : maximization of transmission capability and regulation of voltages along line within the permissible bounds. Series and parallel line compensation methods have been applied for those purposes using capacitors and reactors. In this paper, the effect of series and shunt line compensation for symmetrical line is analyzed. The results obtained in this paper can be applied 765kV class EHV transmission system.

  • PDF

Analysis and Design of DC-link Voltage Controller in Shunt Active Power Filter

  • Wang, Yu;Xie, Yun-Xiang;Liu, Xiang
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.763-774
    • /
    • 2015
  • This study investigates the inherent influence of a DC-link voltage controller on both DC-link voltage control and the compensation performance of a three-phase, four-wire shunt active power filter (APF). A nonlinear variable-parameter DC-link voltage controller is proposed to satisfy both the dynamic characteristic of DC-link voltage control and steady-state compensation performance. Unlike in the conventional fixed-parameter controller, the parameters in the proposed controller vary according to the difference between the actual and the reference DC-link voltages. The design procedures for the nonlinear voltage controller with variable parameters are determined and analyzed so that the proposed voltage controller can be designed accordingly. Representative simulation and experimental results for the three-phase, four-wire, center-spilt shunt APF verify the analysis findings, as well as the feasibility and effectiveness of the proposed DC-link voltage controller.

Comparison of Transient Stability Enhancement by Series/Shunt Compensation and PSS Application for Step Out Instability Phenomena (동기 탈조 불안정 현상의 직.병렬 보상과 PSS에 의한 안정화 효과 분석)

  • Oh, Tae-Kyoo;Kim, Hak-Man;Lee, Young-Woon;Kim, Young-Ju;Chu, Jin-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.844-847
    • /
    • 1997
  • Countermeasure for instability due to sudden changes like electric short circuit, line switching, generation/load dropping etc. in power systems have been sought in terms of intentional or controlled network changes such as series/shunt compensation and generation/load rejection etc. This paper presents the comparison of stability improving effects by series and shunt compensation for the first swing step out phenomena of a large capacity generating station.

  • PDF

Compensation PWM Technique for Extended Output Voltage Range in Three-Phase VSI Using Three Shunt Resistors

  • Shin, Seung-Min;Park, Rae-Kwan;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1324-1331
    • /
    • 2014
  • This paper proposes a compensation PWM technique for the extension of output voltage ranges in three-phase VSI applications using three shunt resistors. The proposed technique aims to solve the dead zone, which occurs in high modulation indexes. In the dead zone, two phase currents cannot be sampled correctly, so that the three-phase VSI cannot be operated up to the maximum output voltage. The dead zone is analyzed in detail, and the compensation PWM algorithm is developed. The proposed algorithm is verified by numerical analysis and experimental results.

CONTROL STRATEGIES FOR SHUNT ACTIVE POWER FILTERS IN DISTORTION SOURCE VOLTAGE SITUATION

  • Yang, Jun;Wang, Zhaoan
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.876-881
    • /
    • 1998
  • The compensation strategy of shunt active power filters is one of the most important link that determine its compensation characteristics. In this paper, a new interpretation of the instantaneous reactive power theory in three-phase circuits was proposed. A compensation strategy (ip, iq mode) was introduced on the basis of the new interpretation. This compensation strategy was compared with other two compensation strategies(P, q mode and UPF mode). When source voltage is distorted, a sinusoidal, the three compensation strategies are equivalent to each other. When source voltage is distorted, a sinusoidal source current may result only by using ip, iq mode. This is the advantage of ip, iq mode. The result is verified by simulation.

  • PDF