• Title/Summary/Keyword: Shrinkage reducing admixture

Search Result 56, Processing Time 0.022 seconds

An Experimental Study on Durability of Mortar and Concrete using Shrinkage reducing typed Superplasticizer (수축저감형 혼화제를 이용한 모르타르 및 콘크리트의 물리적 특성에 관한 기초적 연구)

  • Woo, Hyung-Min;Park, Hee-Gon;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.561-569
    • /
    • 2016
  • Concrete is cheap, easy to deal with, and the quality is satisfactory. Also, it is one of the easiest materials to get because chemical composition of cement is similar to chemical composition of surface. On the other hand, it is so vulnerable to transform because of weak binding capacity and low binding energy that it produces cracks. Cracks decline durability, usability, safety of structures and damage exterior. In order to decline drying shrinkage crack, this study used shrinkage reducing typed Superplasticizer, which is combination of and water-reducing agent for convenience, different with existing study using AE agent, water-reducing agent, shrinkage reducing agent,. Considering SRS field application possibility, this study planned to mix concrete and mortar generally used in ready-mixed concrete company and did basic experiment depending on a change of SRS content ratio and admixture. Based on the experiment result. It is judged that SRS admixture 2% is proper ratio when Given the intensity and length change. Also mass combination will conduct follow-up studies.

An Experimental Study on Shrinkage of High Strength Concrete with Mineral Admixture (혼화재 사용에 따른 고강도 콘크리트의 수축에 관한 실험적 연구)

  • Lee, Young-Jae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.2
    • /
    • pp.99-106
    • /
    • 2010
  • The effects of additive and shrinkage reducing agent on the drying and autogenous shrinkage of high strength concrete are investigated in this study. As results, when the ratio of W/B(low water to binder ratio) increase, the compressive strength is decreased. Comparing with PC(portland cement) concrete, the strength is 2.8%, 3.2% and 3.8% lower respectively than that of PC when concrete mixing ratio is 0.2%, 0.3% and 0.4% in 28 days curing. Drying shrinkage strain of PC concrete showed $-650{\times}10^{-6}$ in 91 days curing. When SR(shrinkage reducing agent) of 0.2%, 0.3% and 0.4% is mixed, the drying shrinkage strains are 21%, 34% and 41% lower than those of PC in 91 days curing. Autogenous shrinkage strain of PC concrete appeared $-480{\times}10^{-6}$ in 56 days curing. When SR of 0.2%, 0.3% and 0.4% is mixed, the autogenous drying shrinkage strain are 12.5%, 19.8% and 33.3% lower than those of PC in 56 days curing. In cases of using the mineral and shrinkage agent or only using a shrinkage reducing agent also appeared same reducing effects for drying shrinkage and autogenous shrinkage.

  • PDF

Evaluating Shrinkage Characteristic of Ternary Grout for PSC Bridge Using Expansive Additive and Shrinkage Reducing Agent (팽창재 및 수축저감제를 이용한 PSC 교량용 3성분계 그라우트의 수축특성 평가)

  • Yuan, Tian-Feng;An, Gi-Hong;Ryu, Gum-Sung;Koh, Kyoung-Taek;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.519-525
    • /
    • 2016
  • This paper reports on analyzing the free and restrained shrinkage characteristic of ternary grout used cementitious admixture. In this study, the cementitious admixture was used such as fly ash, ziricania silica fume by combination of expansive additive (a, b) and shrinkage reducing agent. And a number of basic performance tests were conducted to investigate bleeding, volume change, fluidity and compressive strength behavior. According to the results, within appropriate mixing ratio, even the fluidity is not influenced by expansive additive and shrinkage reducing agent, the resistant properties of bleeding, volume change, shrinkage and compressive strength are increased. Comparing with plain grout, the free shrinkage reduced by a minimum of 29% which specimens are added expansive additive and shrinkage reducing agent. The combination of expansive additive a and shrinkage reducing agent is the most effective for reduction of shrinkage. And increasing the mixing ratio of expansive additive and shrinkage reducing agent extended cracking time. Nevertheless, combined addition of expansive additive a 2.0% and shrinkage reducing agent 0.50% has best shrinkage reduction behavior and not appeared cracking. From the above, the mixing ratio of 2.0% of expansive additive a and 0.50% of shrinkage reducing agent is high performance ternary grout for PSC bridge.

Mechanical Properties and Autogenous Shrinkage of Ultra High Performance Concrete Using Expansive Admixture and Shrinkage Reducing Agent depending on Curing Conditions (팽창재 및 수축저감제를 사용한 초고성능 콘크리트의 양생조건별 역학 및 자기수축 특성)

  • Park, Chun-Jin;Han, Min-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7910-7916
    • /
    • 2015
  • This paper examines the mechanical and autogenous shrinkage characteristics per curing condition of Ultra High Performance Concrete (UHPC) according to the change in the quantities of expansive admixture and shrinkage-reducing agent. In view of the mechanical properties according to the curing condition, all the UHPC specimens that experienced steam curing at $90^{\circ}C$ developed compressive strength higher than 190 MPa, and the specimens that experienced water curing at $20^{\circ}C$ developed compressive strength comparable to that developed at 91 days by the steam-cured specimens. The specimens steam-cured at $90^{\circ}C$ showed high tensile strength of 23.4 MPa whereas slight loss of the tensile strength was observed in those water-cured at 20. Besides, in view of the autogenous shrinkage according to the curing condition, no particular change could be found in the final shrinkage. The compressive strength developed by UHPC according to the use of expansive and shrinkage-reducing agents reached values higher than 190 MPa in case of steam curing at $90^{\circ}C$. Shrinkage reduced by about 45% when using both expansive and shrinkage-reducing agents without difference according to the curing condition.

A Experimental Study on Autogenous Shrinkage properties of Ultra High-Strength Concrete Using Expansion Agent and Shrinkage-reducing (수축저감제 및 팽창재를 조합 사용한 초고강도 콘크리트의 자기수축 특성에 관한 실험적 연구)

  • Park, Hyun;Park, Heung-Lee;Kim, Hak-Young;Paik, Min-Su;Kim, Woo-Jae;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.73-76
    • /
    • 2009
  • In ultra-high-strength concrete, chemical shrinkage is larger than drying shrinkage due to using a large amount of cement and admixtures, and this is a factor deteriorating the quality of structures. Thus, we need a new technology for minimizing the shrinkage strain of ultra-high-strength concrete. So, this study have prepared super-high-strength concrete with specified mixing design strength of over 100MPa and have evaluated a method of reducing chemical shrinkage by using expander and shrinkage-reducing agent. According to the results of this study, with regard to the change in length by chemical shrinkage, an expansion effect was observed until the age of seven days. The expansion effect was higher than previous research that used only expander or shrinkage reducing agent. In addition, ultra-high-strength concrete showed a shrinkage rate that slowed down with time, and the effect of the addition of expander material on compressive strength was insignificant. That is shown that required more database to be accumulated through experimental research for the shrinkage strain of members.

  • PDF

Influence of Water-Binder Ratio and Expansion Admixture on Mechanical Properties of Strain-Hardening Cement-Based Composite with Hybrid Steel and Polyethylene Fibers (강섬유와 폴리에틸렌 섬유를 함께 혼입한 SHCC의 물결합재비와 팽창재 치환유무에 따른 역학적 특성)

  • Kim, Sung-Ho;Lee, Young-Oh;Kim, Hee-Jong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.233-240
    • /
    • 2012
  • Hybrid SHCC is being researched actively for its excellent performance in controlling macro and micro cracks using macro and micro fibers, respectively. However, a significant autogenous shrinkage of SHCC is expected since it possesses high unit cement volume in its mix proportion, resulting in autogenous shrinkage cracks. Therefore, this study was performed to evaluate mechanical property of shrinkage-reducing type hybrid SHCC mixed together with steel fiber and PE fiber with excellent micro/macro crack controlling performance. In order to evaluate mechanical property of shrinkage-reducing type hybrid SHCC, replacement ratios of 0% and 10% of expansive admixture and water to binder ratios of 0.45, 0.3, and 0.2 were considered as variables. Then, shrinkage, compressive, flexural, and direct tensile tests were performed. The test results showed that mix proportion with W/B 0.3 significantly improved mechanical performance by using 10% replacement of expansive admixture.

Properties on the Shrinkage of High Performance Concrete Using Expansive Additive and Shrinkage Reducing Agent (팽창재 및 수축저감제를 이용한 고성능 콘크리트의 수축특성)

  • Han, Cheon-Goo;Kim, Sung-Wook;Koh, Kyoung-Taek;Pei, Zheng-Lie
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.785-793
    • /
    • 2003
  • This study is intended to analyze the effectiveness of expansive additive, shrinkage reducing agent and combination of the two to reduce the autogenous and drying shrinkage of high performance concrete using mineral admixture such as fly ash, blast furnace slag powder and silica fume. According to results, when expansive additive and shrinkage reducing agent are mixed within an appropriate mixing ratio, fluidity and air content are not influenced, and the enhancement of compressive strength is favorable at the age of 91 and 180days. At the mixing ratio of expansive additive of 5% and 10%, the autogenous and drying shrinkage is reduced by 32∼68% and 25∼49% respectively in comparison with plain concrete. And they are reduced by 18∼34% and 16∼26% respectively at the mixing ratio of shrinkage reducing agent of 0.5% and 1.0%, compared with plain concrete. The mixture of EA-SR combined with expansive additive and shrinkage reducing agent is most effective for reduction of shrinkage. Therefore, it is considered that the using method in combination with expansive additive and shrinkage reducing agent is effective to reduce the shrinkage of high performance concrete using mineral admixture such as fly ash, blast slag powder and silica fume.

Influence of Cement Matrix's Compressive Strength and Replacement of Expansive Admixture on the Mechanical Properties of Synthetic Polyethylene (PE) Fiber-Reinforced Strain-Hardening Cement-Based Composites (SHCCs) (압축강도와 팽창재 대체에 따른 폴리에틸렌 합성섬유로 보강된 변형 경화형 시멘트 복합체의 역학적 특성)

  • Song, Young Jae;Yun, Hyun Do;Min, Byung Sung;Rokugo, Keitetsu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.95-103
    • /
    • 2012
  • In order to improve the dimensional stability and mechanical performance of cement-based composites, the effect of an expansive admixture based on calcium sulphoaluminate (CSA) on the shrinkage and mechanical properties of strain-hardening cement-based composite (SHCC), which exhibits multiple cracks and pseudo strain-hardening behavior in the direct tension, is investigated. Polyethylene fibers reinforced SHCC mixtures with three levels (30, 70, and 100MPa) of compressive strength were compared through free shrinkage, compressive strength, flexural strength, and direct tensile strength measurements. The SHCC mixtures were cast with and without replacing 10% of Portland cement content with CSA admixture. According to test results, CSA admixture is effective in reducing shrinkage of SHCC material. SHCC mixture with CSA admixture exhibited a little higher strength than companion mixture without CSA admixture.

The non-shrinkage grout to use ground fly ash as admixture

  • Kim, Yoo;Chu, Yong-Sik;Seo, Sung-Kwan;Kim, Jang-ho Jay
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.509-513
    • /
    • 2018
  • This study uses fly ash for non-shrinkage grout in order to develop strength of grout and improve its durability. We grind fly ash to the extent of $7,000cm^2/g$ and use ground fly ash and raw fly ash respectively at the proportion of 10%, 20%, 30% instead of OPC and compare the results drawn on the condition of each proportion. As a mixed material of grout, EVA and water-reducing agent is added in order to prevent bleeding and improve segregation resistance, CSA is added with a view to preventing drying shrinkage and improving early strength property. In regard to flow and flow time test for analyzing and evaluating workability, it is revealed that grouts of all mix proportions except raw fly ash 30% mix proportion satisfy all performance criteria. With regard to length change rate, grout with no admixture shows the highest shrinkage rate, but the rate is 0.0005%, extremely insignificant rate. As material age increases, compressive strength of two grouts, that is to say ground fly ash 10% and 20%-used grouts, exceed that of grout with no admixture or show high-level compressive strength.

Physical Properties of Concrete Using Shrinkage Reducing Admixture and Expansive Additive (수축저감제와 팽창재를 혼입한 콘크리트의 물리적 특성)

  • Jung, Yang-Hee;Song, Young-Chan;Kim, Yong-Ro;Han, Hyung-Sub;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.919-922
    • /
    • 2008
  • This paper reports the physical and shrinkage properties of concrete using expansive additive(E) and three shrinkage reducing admixtures(SRA1, 2, 3) in order to reduce shrinkage of concrete. For the properties of fresh concrete, the use of SRA1, 2, 3 results in a increase in fluidity and decrease in the dosage of super plasticizer as much as 0.05$\sim$0.1%. And For the properties of hardened concrete, the use of SRA1, 2, 3 results in a decrease in compressive, tensile and flexural strength slightly. For drying shrinkage properties, the use of SRA3 is the most effective for reduction of shrinkage, and the next best way to reduce shrinkage is combination with expansive additive(E) and shrinkage reducing admixture(SRA) or the using of expansive additive(E).

  • PDF