• Title/Summary/Keyword: Shrinkage defect

Search Result 49, Processing Time 0.033 seconds

Low Temperature Sintering and Electrical Properties of Bi-based ZnO Chip Varistor (Bi계 ZnO 칩 바리스터의 저온소결과 전기적 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.876-881
    • /
    • 2011
  • The sintering, defect and grain boundary characteristics of Bi-based ZnO chip varistor (1,608 mm size) have been investigated to know the possibility of lowering a manufacturing price by using 100 % Ag inner-electrode. The samples were prepared by general multilayer chip varistor process and characterized by shrinkage, SEM, current-voltage (I-V), admittance spectroscopy (AS), impedance and modulus spectroscopy (IS & MS) measurement. There are no problems to make a chip varistor with 100% Ag inner-electrode in the sintering temperature range of 850~900$^{\circ}C$ for 1 h in air. A good varistor characteristics ($V_n$= 9.3~15.4 V, a= 23~24, $I_L$= 1.0~1.6 ${\mu}A$) were revealed but formed $Zn_i^{{\cdot}{\cdot}}$(0.209 eV) as dominant defect, and increased the distributional inhomogeneity and the temperature instability in grain boundary barriers.

Thixoforging Die Design and Process Analysis of Hollow Shape Part with Metal Matrix Composites (중공형 금속복합재료의 Thixoforging 금형설계 및 공정해석)

  • Heo J. C.;Lee S. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.268-271
    • /
    • 2001
  • The die design of the liquid and semi-solid forming process is performed by CAE technology, The die design by the computer simulation has some advantages compared with the conventional method which has been performed by the designer's experiences in trials and emu. The defect zones such as porosity and shrinkage has been predicted by simulation results. The result of the numerical analysis for the proposed casting condition shows the characteristics of thixotropic flow, and was used to determine the geometry of the gating system and die cavity. The optimized production conditions were also proposed by result of computer aided engineering.

  • PDF

Study on the Process Management for Casting Defects Detection in High Pressure Die Casting based on Machine Learning Algorithm (고압 다이캐스팅 공정에서 제품 결함을 사전 예측하기 위한 기계 학습 기반의 공정관리 방안 연구)

  • Lee, Seungro;Lee, Seungcheol;Han, Dosuck;Kim, Naksoo
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.521-527
    • /
    • 2021
  • This study presents a process management method for the detection of casting defects during in high-pressure die casting based on machine learning. The model predicts the defects of the next cycle by extracting the features appearing over the previous cycles. For design of the gearbox, the proposed model detects shrinkage defects with data from three cycles in advance with 98.9% accuracy and 96.8% recall rates.

A Study on Reduction of Crack and Composite Deterioration of Base Concrete Using Waste Fiber (폐섬유를 활용한 바탕콘크리트의 균열 및 복합열화 저감에 관한 연구)

  • Chu, Yong-Hui;Kang, Ye-Jin;Lee, Dong-Oun;Kim, Dae-Geon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.38-39
    • /
    • 2021
  • Recently, 67% of defect and tenant lawsuits were identified as leaks due to cracks. In particular, when the final finish of the roof of a building is designed with base concrete, complex deterioration occurs due to the harsh environment such as shrinkage and expansion due to external temperature changes, freezing and thawing, and the use of calcium chloride due to snow accumulation. Therefore, it is intended to secure long-term durability by reducing cracks in the base concrete by using waste fibers, which are industrial by-products.

  • PDF

Determination of Optimal Adhesion Conditions for FDM Type 3D Printer Using Machine Learning

  • Woo Young Lee;Jong-Hyeok Yu;Kug Weon Kim
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.419-427
    • /
    • 2023
  • In this study, optimal adhesion conditions to alleviate defects caused by heat shrinkage with FDM type 3D printers with machine learning are researched. Machine learning is one of the "statistical methods of extracting the law from data" and can be classified as supervised learning, unsupervised learning and reinforcement learning. Among them, a function model for adhesion between the bed and the output is presented using supervised learning specialized for optimization, which can be expected to reduce output defects with FDM type 3D printers by deriving conditions for optimum adhesion between the bed and the output. Machine learning codes prepared using Python generate a function model that predicts the effect of operating variables on adhesion using data obtained through adhesion testing. The adhesion prediction data and verification data have been shown to be very consistent, and the potential of this method is explained by conclusions.

Effect of Nanocellulose on the Mechanical and Self-shrinkage Properties of Cement Composites (나노셀룰로오스가 시멘트복합체의 역학적 특성 및 자기수축 특성에 미치는 영향)

  • Kim, Sun-Woo;Yoon, Byung-Tae
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.380-385
    • /
    • 2016
  • Nanocelluloses, mainly cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC, i.e., defect-free, rod-like crystalline residues after acid hydrolysis of fibers), have been the subject of recent interest. Due to the presence of hydroxyl groups on the surface of nanocelluloses, their surfaces are reactive, making them suitable candidates for reinforcing materials for manufacturing polymer composites. In this study, CNF was used as a reinforcing material for manufacturing cement composites. CNF was prepared by TEMPO (2,2,6,6,-tetramethyl piperidine-1-oxyl radical) oxidation procedure combined with extensive homogenization and ultrasonication. Transmission electron microscopy (TEM) analysis of the suspension showed the width of CNF between 10 and 15 nm. The compressive strength of cement composites containing 0.5% CNF was comparable to that of conventional cement composites. On the other hand, the tensile and flexural strength were improved by 49.7% and 38.8%, respectively, compared to those of conventional cement composites. Also, at an ambient condition, the degree of self-shrinkage reduction reached to 18.9% in one day, followed by 5.9% in 28 days after molding.

Effect of presurfacing on drying rate and drying defect of Quercus grosseserrata BI. (전평삭처리(前平削處理)가 물참나무의 건조속도(乾燥速度)와 건조결함(乾燥缺陷)에 미치는 영향(影響))

  • Han, Gyu-Seong;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.29-39
    • /
    • 1986
  • To investigate the effect of presurfacing, both 25mm rough and pre surfaced oak boards (Quercus grosseserrata BI.) were dried in the same dry kiln condition. Drying curves, drying strains and drying defects of rough and presurfaced boards were compared. The results obatained are as follows. 1. Average drying rate of rough and presurfaced boards from green to 10% M.C. was 0.276%/hr. and 0.284%/hr., respectively. 2. At the early stage of drying, in case of rough boards, maximum tensile strain of outer slices was $-24.2{\times}10^{-4}$mm/mm and maximum compressive strain of innermost slices was $13.0{\times}10^{-4}$mm/mm, and in case of pre surfaced boards, maximum tensile strain of outer slices was $-14.5{\times}10^{-4}$mm/mm and maximum compressive strain of innermost slices was $28.1{\times}10^{-4}$mm/mm. And in both cases, stress reversal occurred at about 40% M.C.. 3. Maximum surface checking appeared at about 40% M.C.. Of the 10 rough boards. 6 hoards contained surface checks, but presurfaced boards did not contained surface checks after drying. And the results of end checking were similar to those of surface checking. But, honeycomb was not found in both cases. 4. Board shrinkage. warp and casehardening of presurfaced boards were similar to those of rough boards. But, collapse of prsurfaced boards was less than that of rough boards.

  • PDF

Mechanism and Application of NMOS Leakage with Intra-Well Isolation Breakdown by Voltage Contrast Detection

  • Chen, Hunglin;Fan, Rongwei;Lou, Hsiaochi;Kuo, Mingsheng;Huang, Yiping
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.402-409
    • /
    • 2013
  • An innovative application of voltage-contrast (VC) inspection allowed inline detection of NMOS leakage in dense SRAM cells is presented. Cell sizes of SRAM are continual to do the shrinkage with bit density promotion as semiconductor technology advanced, but the resulting challenges include not only development of smaller-scale devices, but also intra-devices isolation. The NMOS leakage caused by the underneath n+/P-well shorted to the adjacent PMOS/N-well was inspected by the proposed electron-beam (e-beam) scan in which VC images were compared during the in-line process step of post contact tungsten (W) CMP (Chemical Mechanical Planarization) instead of end-of-line electrical test, which has a long response time. A series of experiments based on the mechanism for improving the intra-well isolation was performed and verified by the inline VC inspection. An optimal process-integration condition involved to the tradeoff between the implant dosage and photo CD was carried out.

The Study on the Microstructures in Direct Squeeze cast and Gravity Cast of 7XXX Al Wrought Alloy (중력주조 및 직접가압주조 7XXX계 Al합금의 미세조직에 관한 연구)

  • Kim, Sug-Won;Kim, Dae-Young;Woo, Ki-Do;Kim, Dong-Kun
    • Journal of Korea Foundry Society
    • /
    • v.19 no.1
    • /
    • pp.47-53
    • /
    • 1999
  • Squeeze casting process has been used in the field of a commercial manufacturing method, in which metal is enforcedly solidified under pressure enough to prevent the cast defects such as either gas porosity or shrinkage defect. In this paper, to clarify the relationship between applied pressures and macro ${\cdot}$ microstructural behaviors in gravity and direct squeeze casts, specimens were cast by various squeezing pressures during solidification of 7000 series Al wrought alloy in the metal die designed specially. The applied pressures used in this study were 0, 25, 50, and 75 MPa. The microstructural morphologies of squeeze cast were more fine and dense with increasing the applied pressures, because of the greater solidification rate of billet resulting from the applied pressure. A normal segregation phenomenon of an increasing in amount of eutectics towards the center of the billet was observed for squeeze casts, whereas gravity cast showed an inverse segregation phenomenon of an increasing in amount of eutectics towards the edge in the billet. This change in segregation pattern which is normal or inverse is due to a higher radial temperature gradient and reduced time in the semi solid state for squeeze casting.

  • PDF

An Investigation of the Coherent Structures in Turbulent Wake Past a Stationary and Rotating Cylinder (정지 및 회전하는 원주에 의한 난류후류의 응집구조)

  • 부정숙;이종춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1310-1321
    • /
    • 1994
  • Turbulent coherent structures in the intermediate wake of a stationary and rotating cylinder, spin rate S=0.7, situated in a uniform were experimentally investigated using a conditionalphase average technique. Measurements were carried out at a section of 8.5 diameters downstream form the center of cylinder and a Reynolds number of $Re=6.5{\times}10^{3}.$/TEX> The phase averaged velocity and velocity vector fields, contours of vorticity, turbulent intermittency function and velocity fluctuation energy are presented and discussed in relation to the large scale coherent structures by Karman vortices that shed periodically from the cylinder. Coherent wake structures of the rotating cylinder is almost identical with stationary cylinder, but the lateral displacement and shrinkage of turbulent wake region is occured by rotation. Rotation of the cylinder result in that the deflection of wake center to deceleration region(Y/D${\simeq}-0.3)$ and the decrease of mean velocity defect(10%), vorticity strength of large scale structures(19%), total velocity fluctuation energy(12%).