• Title/Summary/Keyword: Shrinkage cavities

Search Result 41, Processing Time 0.022 seconds

On Shrinkage Cavities Shape Modeling for Fatigue Simulation of A356 Alloy Specimen (A356 합금 시편의 수축공 결함형상에 대한 피로해석용 형상 모델링 방법)

  • Kwak, Si-Young;Cho, In-Sung
    • Journal of Korea Foundry Society
    • /
    • v.39 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • During the casting process, it is possible to minimize shrinkage and blowholes by modifying the casting design. However, it is impossible to eliminate these factors completely. Therefore, mechanical design engineers apply a sufficient safety factor owing to the possibility of insufficient performances of the cast products. In this paper, prediction method of the fatigue life of cast products containing shrinkage is conducted by using CT (computed tomography) and the SSM (shape simplification method), and additional fatigue analyses are carried out. The analysis results are then compared to results from actual experiments on samples with shrinkage defects. It is found to be that the considering actual shrinkage in cast products by means of stress and fatigue analyses is more accurate and effective. It is also considered that the proposed hot spot method provides us a good tool to predict the fatigue lifes of cast product.

POLYMERIZATION SHRINKAGE, HYGROSCOPIC EXPANSION AND MICROLEAKAGE OF RESIN-BASED TEMPORARY FILLING MATERIALS (레진계 임시수복재의 중합수축, 수화팽창과 미세누출)

  • Cho, Nak-Yeon;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.2
    • /
    • pp.115-124
    • /
    • 2008
  • The purpose of this study was to measure the polymerization shrinkage and hygroscopic expansion of resin-based temporary filling materials and to evaluate microleakage at the interface between the materials and cavity wall. Five resin-based temporary filing materials were investigated: Fermit (Vivadent), Quicks (Dentkist), Provifil (Promedica), Spacer (Vericom), Clip (Voco). Caviton (GC) was also included for comparison. Polymerization shrinkage of five resin-based temporary filling materials was measured using the bonded disc method. For the measurement of hygroscopic expansion, the discs of six cured temporary filling materials were immersed in saline and a LVDT displacement sensor was used to measure the expansion for 7 days. For estimating of microleakage, Class I cavities were prepared on 120 extracted human molars and randomly assigned to 6 groups of 20 each. The cavities in each group were filled with six temporary filling materials. All specimens were submitted to 1000 thermocycles, with temperature varying from $5^{\circ}C/55^{\circ}C$. Microleakage was determined using a dye penetration test. The results were as follows: 1. Fermit had significantly less polymerization shrinkage than the other resin-based temporary fill ing materials. Fermit (0.22%) < Spacer (0.38%) < Quicks (0.64%), Provifil (0.67%), Clip (0.67%) 2. Resin-based temporary filling materials showed 0.43-1.1% expansion in 7 days. 3. Fermit showed the greatest leakage, while Quicks exhibited the least leakage. 4. There are no correlation between polymerization shrinkage or hygroscopic expansion and microleakage of resin-based temporary filling materials.

The Effect of Filling Imbalances on the Molding Quality in the Multy-Cavity Injection Mold (다수캐비티 사출금형에서 충전 불균형이 성형 품질에 미치는 영향)

  • Han, Dong-Yeop;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • The injection molding process is a predominant method for producing plastic parts. In order to maximize productivity and molding quality in a injection mold, it is important that each cavity in a multi-cavity injection mold is identical. This requires that cavity dimensions should be identical and delivery system of melt to each cavity have to be the same. Despite the geometrically balanced layout in multi-cavity injection mold more than 4 cavities, it has been observed that the filling in each cavity results in imbalances. Most of cases, this phenomenon of filling imbalances have a bad effect on dimension accuracy, warpage, molding appearance and strength of molding parts. In this study, experiment were conducted to investigate the effect of filling imbalances on the molding quality(surface gloss, shrinkage, tensile strength) in the multy-cavity injection mold.

  • PDF

Optimization of injection molding to minimize sink index with Taguchi's Robust Design technique (다구찌의 강건설계 기법을 이용한 사출 성형품의 싱크 마크를 최소화하기 위한 사출성형 조건의 최적화)

  • Kwon, Youn Suk;Jeong, Yeong Deug
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.17-21
    • /
    • 2007
  • In the manufacture and processing of large plastic materials, product quality is tested and verified through several techniques such as injection processing, residual stress through injection molding and shrinkage. With regards to the injection molding process, common problems such as inconsistent density is seen when different points of the product are discovered to have varying thickness levels. Sink marks in product are then evident. This occurs when there is poor molding conditions caused about by poor runner and packaging systems incorporated into the process. We designed the runner system which is possible balanced filling to cavities using CAE program $Moldflow^{TM}$ and then obtained optimal processing conditions by Taguchi's Robust Design technique.

  • PDF

The Effect of Filling Imbalances on the Molding Quality in the Multy-Cavity Injection Mold (다수캐비티 사출금형에서 충전 불균형이 성형 품질에 미치는 영향)

  • Han, Dong-Yeop;Jeong, Yeong-Deug
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.89-94
    • /
    • 2008
  • The injection molding process is a predominant method for producing plastic parts. In order to maximize productivity and molding quality in a injection mold, it is important that each cavity in a multi-cavity injection mold is identical. This requires that cavity dimensions should be identical and delivery system of melt to each cavity have to be the same. Despite the geometrically balanced layout in multi-cavity injection mold more than 4 cavities, it has been observed that the filling in each cavity results in imbalances. Most of cases, this phenomenon of filling imbalances have a bad effect on dimension accuracy, warpage, molding appearance and strength of molding parts. In this study, experiment were conducted to investigate the effect of filling imbalances on the molding quality(surface gloss, shrinkage, tensile strength) in the multy-cavity injection mold.

  • PDF

CUSPAL DEFLECTION IN CLASS V CAVITIES RESTORED WITH COMPOSITE RESINS (5급 와동의 복합레진 수복 시 발생되는 교두굴곡에 관한 연구)

  • Park, Jun-Gyu;Lim, Bum-Soon;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.2
    • /
    • pp.83-89
    • /
    • 2008
  • The purpose of this study was to evaluate the effect of the polymerization shrinkage and modulus of elasticity of composites on the cusp deflection of class V restoration in premolars. The sixteen extracted upper premolars were divided into 2 groups with similar size. The amounts of cuspal deflection were measured in Class V cavities restored with a flowable composite (Filtek flow) or a universal hybrid composite (Z-250). The bonded interfaces of the sectioned specimens were observed using a scanning electron microscopy (SEM). The polymerization shrinkage and modulus of elasticity of the composites were measured to find out the effect of physical properties of composite resins on the cuspal deflection. The results were as follows. 1. The amounts of cuspal deflection restored with Filtek flow or Z-250 were $2.18\;{\pm}\;0.92{\mu}m$ and $2.95\;{\pm}\;1.13\;{\mu}m$, respectively. Filtek flow showed less cuspal deflection but there was no statistically significant difference (p > 0.05). 2. The two specimens in each group showed gap at the inner portion of the cavity. 3. The polymerization shrinkages of Filtek flow and Z-250 were 4.41% and 2.23% respectively, and the flexural modulus of elasticity of cured Filtek flow (7.77 GPa) was much lower than that of Z-250 (17.43 GPa). 4. The cuspal deflection depends not only on the polymerization shrinkage but also on the modulus of elasticity of composites.

Cavity Design for Injection Molded Gears by the Compensation Method of Design Parameters (설계인자 보정방법에 의한 사출성형기어의 캐비티 설계)

  • Lee, Sung-Chul;Kim, Choong-Hyun;Kwon, Oh-Kwan;Huh, Yong-Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3142-3151
    • /
    • 1996
  • As plastics shrink when changing from a molten to a solid state, mold cavities must by made larger than the product specification, In making molded gears, the teeth in the cavity must be carefully compensated for shrinkage so that the teeth of gears will have the correct profile. Two compensation methods are widely used in the cavity design. One is the compensation of a module and the other is the modification of a pressure angle and profile shifting coefficient. These methods, however, do not provide a gear cavity with all disign parameters for gears and several parameters are determined by experience. In this paper, the new design technique, namely the compensation method of design parameters, was proposed , which is based on the three kinds of shrinkage rates obtained from the measuring data of the prototype of molded gears. Using the shrinkage rates in the tip circle, tooth heigth and tooth thickness, we calculate the whole design parameters of a gear cavity. Thus, the gear cavity is considered as a complete gear with the compensated module, pressure angle, profile shifting coefficient, clearance coefficient and back lash amount so that the formula of gears can be applied to the cavity design effectively. Experimental results show that more precision molded gears can be made by using the proposed design method.

Novel Process to Improve Defect Problems for Thermal Nanoimprint Lithography (열 나노임프린트 리소그래피를 위한 패턴의 결함 향상에 관한 실험적 연구)

  • Park, Hyung-Seok;Shin, Ho-Hyun;Seo, Sang-Won;Sung, Man-Young
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.5
    • /
    • pp.223-230
    • /
    • 2006
  • The reliability of imprint patterns molded by stamps for industrial application of nanoimprint lithography (NIL), is an important issue. Usually, defects can be produced by incomplete filling of negative patterns and the shrinkage phenomenon of polymers in conventional NIL. In this paper, the patterns that undergo a varied temperature or varied pressure period during the thermal NIL process have been investigated, with the goal of resolving the shrinkage and defective filling problems of polymers. The effects on the formation of polymer patterns in several profiles of imprint processes are also studied. Consequently, it is observed that more precise patterns are formed by the varied temperature (VT-NIL) or varied pressure (VP-NIL). The NIL (VT-NIL or VP-NIL) process has a free space compensation effect on the polymers in stamp cavities. From the results of the experiments, the polymer's filling capability can be improved. The VT-NIL is merged with the VP-NIL for the better filling property. The patterns that have been imprinted in the merged NIL are compared with the results of conventional NIL. In this study, the improvement in the reliability for results of thermal NIL has been achieved.

Bulk-fill 복합레진, 믿고 사용해도 될까?

  • Koh, Kyeol;Park, Jeong-Won
    • The Journal of the Korean dental association
    • /
    • v.57 no.3
    • /
    • pp.162-168
    • /
    • 2019
  • Composite resin restorations in posterior teeth are increasing due to the aesthetic needs of patients and the development of materials. This trend will accelerate in line with domestic insurance policies. However, resin composites generate stresses due to their contraction during the polymerization process. To reduce the polymerization shrinkage stress of resin composites, incremental layering technique has been recommended for decades. This technique reduces stress at the cavity wall interface and allows a more efficient light curing of the material. Bulk-fill resin composites have been designed to simplify the restorative technique because they can be placed into cavities in a single increment of 4-5mm. The simplification of the operative procedures is desirable in clinical daily practice. In this context, bulk-fill resin composites are an attractive alternative for posterior restorations. However, a clearer understanding of the clinical performance of this relatively new class of materials in comparison to conventional resin composites is required. Based on previous studies, the aim of the current review was to present the clinical criteria for the use of bulk-fill composites in direct restorations of posterior teeth.

  • PDF

THE EFFECT OF IRRADIATION MODES ON POLYMERIZATION AND MICROLEAKAGE OF COMPOSITE RESIN (광조사 방식이 복합레진의 중합과 누출에 미치는 영향)

  • Park, Jong-Jin;Park, Jeong-Won;Park, Sung-Ho;Park, Ju-Myong;Kwon, Tae-Kyung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.2
    • /
    • pp.158-174
    • /
    • 2002
  • The aim of this study was to investigate the effect of light irradiation modes on polymerization shrinkage, degree of cure and microleakage of a composite resin. VIP$^{TM}$ (Bisco Dental Products, Schaumburg, IL, USA) and Optilux 501$^{TM}$ (Demetron/Kerr, Danbury, CT, USA) were used for curing Filtek$^{TM}$ Z-250 (3M Dental Products, St. Paul., MN, USA) composite resin using following irradiation modes: VIP$^{TM}$ (Bisco) 200mW/$\textrm{cm}^2$ (V2), 400mW/$\textrm{cm}^2$ (V4), 600mW/$\textrm{cm}^2$ (V6), Pulse-delay (200 mW/$\textrm{cm}^2$ 3 seconds, 5 minutes wait, 600mW/$\textrm{cm}^2$ 30seconds, VPD) and Optilux 501$^{TM}$ (Demetron/Kerr) C-mode (OC), R-mode (OR). Linear polymerization shrinkage of the composite specimens were measured using Linometer (R&B, Daejeon, Korea) for 90 seconds for V2, V4, V6, OC, OR groups and for up to 363 seconds for VPD group (n=10, each). Degree of conversion was measured using FTIR spectrometer (IFS 120 HR, Bruker Karlsruhe, Germany) at the bottom surface of 2 mm thick composite specimens V2, Y4, V6, OC groups were measured separately at five irradiation times (5, 10, 20, 40, 60 seconds) and OR, VPD groups were measured in the above mentioned irradiation modes (n=5 each). Microhardness was measured using Digital microhardness tester (FM7, Future-Tech Co., Tokyo, Japan) at the top and bottom surfaces of 2mm thick composite specimens after exposure to the same irradiation modes as the test of degree of conversion(n=3, each). For the microleakage test, class V cavities were prepared on the distal surface of the ninety extracted human third molars. The cavities were restored with one of the following irradiation modes : V2/60 seconds, V4/40 seconds, V6/30 seconds, VPD , OC and OR. Microleakage was assessed by dye penetration along enamel and dentin margins of cavities. Mean polymerization shrinkage, mean degree of conversion and mean microhardness values for all groups at each time were analyzed using one-way ANOVA and Duncan's multiple range test, and using chi-square test far microleakage values. The results were as follows : . Polymerization shrinkage was increased with higher light intensity in groups using VIP$^{TM}$ (Bisco) : the highest with 600mW/$\textrm{cm}^2$, followed by Pulse-delay, 400mW/$\textrm{cm}^2$ and 200mW/$\textrm{cm}^2$ groups, The degree of polymerization shrinkage was higher with Continuous mode than with Ramp mode in groups using Optilux 501$^{TM}$ (Demetron/Kerr). . Degree of conversion and microhardness values were higher with higher light intensity. The final degree of conversion was in the range of 44.7 to 54.98% and the final microhardness value in the range of 34.10 to 56.30. . Microleakage was greater in dentin margin than in enamel margin. Higher light intensity showed more microleakage in dentin margin in groups using VIP$^{TM}$ (Bisco). The microleakage was the lowest with Continuous mode in enamel margin and with Ramp mode in dentin margin when Optilux 501$^{TM}$ (Demetron/Kerr) was used.