• Title/Summary/Keyword: Shrinkage

Search Result 3,248, Processing Time 0.027 seconds

Experimental and Computational Study on the Mold Shrinkage of PPS Resin in Injection Molded Specimen

  • Pak, Hyosang;Sim, Hyojin;Oh, Hyeon-Kyung;Lee, Guen-Ho;Kang, Min-A;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.55 no.2
    • /
    • pp.120-127
    • /
    • 2020
  • In this study, molding shrinkage of PPS resin was investigated. Two types of PPS resins with differing glass fiber and calcium carbonate content were used for this purpose. To observe mold shrinkage, molding conditions based on injection temperature, injection speed, and the position of the cushion were selected. Circular and rectangular specimens were used for the study model. Injection molding simulation was performed to predict the filling pattern and mold shrinkage, and the simulation results were compared with the experimental conclusions. It was observed that the mold shrinkage showed the highest shrinkage (distributed from 0.05% to 0.32%) dependence on the injection temperature, and the lowest shrinkage (distributed from 0.05% to 0.31%) dependence on the injection speed. The role of the position of the cushion in mold shrinkage was difficult to observe. The results of the simulation mostly agreed with the experimental results; however, for some molding conditions, the mold shrinkage in the simulation was overestimated as compared to that in the experiment.

A Basic Study on Autogenous Shrinkage and physical property of the Ultra-High-Strength Concrete (초고강도 콘크리트의 자기수축 및 물리적 특성에 관한 기초적 연구)

  • Park, Hyun;Yoon, Ki-Hyun;Cho, Seung-Ho;Kim, Kwang-Ki;Kim, Woo-Jae;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.57-60
    • /
    • 2009
  • In ultra-high-strength concrete, autogenous shrinkage is larger than dry shrinkage due to the consume of a large amount of cement and cementitous material, and this is a factor deteriorating the quality of structures. Thus, we need a new technology for minimizing the shrinkage strain for ultra-high-strength concrete. So, this paper have prepared super-high-strength concrete with specified mixing design strength of over 150MPa and have evaluated a method of reducing autogenous shrinkage by utilizing expander and shrinkage-reducing agent. According to the results of this study, with regard to the change in length by autogenous shrinkage, an expansion effect was observed until the age of seven days. The expansion effect was higher when the contents of the expander material were higher. In addition, ultra-high-strength concrete showed a shrinkage rate that slowed down with time, and the effect of the addition of expander material on compressive strength was insignificant. That is shown that required more database to be accumulated through experimental research for the shrinkage strain of members.

  • PDF

Analysis of Crack Control Effect of Ultra-low Shrinkage Concrete through Wall Mock-up Test (벽체 실물대부재실험을 통한 초 저수축 콘크리트의 균열제어 효과 분석)

  • Seo, Tae-Seok;Lee, Hyun-Seung;Kim, Kang-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.45-55
    • /
    • 2022
  • Ultra-low shrinkage concrete is very effective for securing the quality and appearance of a concrete structure because it can control the drying shrinkage cracks of the concrete structure to within a certain limit. In this study, with the purpose of commercializing ultra-low shrinkage concrete, the optimal amount of expansive agent and shrinkage reducing agent was determined through a lab test, and a concrete wall mock-up test was conducted to examine the shrinkage properties and crack control effects of ultra-low shrinkage concrete. As a result, it was confirmed that there was little drying shrinkage deformation in the wall specimen, and furthermore that no cracks were generated.

Factors Influencing the Camber of Cofired Resistor/Low Temperature Cofired Ceramics (LTCC) Bi-Layers (동시 소성된 저항/저온 동시 소성 세라믹(LTCC) 이중층의 캠버에 영향을 미치는 인자)

  • Ok Yeon Hong;Seok-Hong Min
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.537-549
    • /
    • 2023
  • The sintering shrinkage behaviors of low temperature cofired ceramics (LTCC) and resistors were compared using commercial LTCC and thick-film resistor pastes, and factors influencing the camber of cofired resistor/LTCC bi-layers were also investigated. The onset of sintering shrinkage of the resistor occurred earlier than that of LTCC in all resistors, but the end of sintering shrinkage of the resistor occurred earlier or later than that of LTCC depending on the composition of the resistor. The sintering shrinkage end temperature and the sintering shrinkage temperature interval of the resistor increased as the RuO2/glass volume ratio of the resistor increased. The camber of cofired resistor/LTCC bi-layers was obtained using three different methods, all of which showed nearly identical trends. The camber of cofired resistor/LTCC bi-layers was not affected by either the difference in linear shrinkage strain after sintering between LTCC and resistors or the similarity of sintering shrinkage temperature ranges of LTCC and resistors. However, it was strongly affected by the RuO2/glass volume ratio of the resistor. The content of Ag and Pd had no effect on the sintering shrinkage end temperature or sintering shrinkage temperature interval of the resistor, or on the camber of cofired resistor/LTCC bi-layers.

Effects of Binder Burnout Temperatures on Sintering Shrinkage of Multilayer Ceramics (다층 세라믹스의 소결 수축율에 대한 Binder Burnout 온도의 영향)

  • 성재석;구기덕;윤종광
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.12
    • /
    • pp.1373-1379
    • /
    • 1996
  • Change of sintering shrinkage in alumina-based multilayer ceramics was observed in various lamination condi-tions and binder burnout (BBO) temperatures. It was found that the linear shrinkages in X and Y directions were nearly the same with the BBO temperatures but a large shrinkage difference in Z direction was observed. However this phenomenon was diminished when BBO temperature was increased. A linear relationship between the laminated density and the sintering shrinkage was found and the slope was independant on the BBO temperature but dependant on the shrinkage direction.

  • PDF

Shrinkage Properties of High Early Strength Fiber Reinforced Concrete (초기강도 섬유보강 콘크리트의 수축특성)

  • 원종필;김현호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.124-131
    • /
    • 2001
  • The shrinkage properties of high early strength concrete were investigated. One of the method to control microcrack and crack development due to restrained shrinkage is to reinforce concrete with randomly distributed fibers. Regulated-set cement and two different types of fiber were adopted. The experiments for heat of hydration, drying and autogenous shrinkage were conducted. The desirable resistance of high early strength fiber reinforced concrete to restrained shrinkage microcracking was achieved. These results indicate that use of fiber in high early strength concrete plays an important role in control of crack development due to restrained shrinkage.

  • PDF

Shrinkage analysis of reinforced concrete floors using shrinkage-adjusted elasticity modulus

  • Au, F.T.K.;Liu, C.H.;Lee, P.K.K.
    • Computers and Concrete
    • /
    • v.4 no.6
    • /
    • pp.437-456
    • /
    • 2007
  • The shrinkage of large reinforced concrete floors often gives rise to cracking problems. To identify the problematic areas, shrinkage movement analysis is often carried out by finite element method with proper creep and shrinkage models using step-by-step time integration. However as the full stress history prior to the time interval considered is necessary, with the increase in the number of time intervals used, the amount of computations increases dramatically. Therefore a new method using the shrinkage-adjusted elasticity modulus (SAEM) is introduced so that analysis can be carried out using one single step. Examples are presented to demonstrate its usefulness.

Experimental Study on Tensile Creep of Coarse Recycled Aggregate Concrete

  • Seo, Tae-Seok;Lee, Moon-Sung
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.337-343
    • /
    • 2015
  • Previous studies have shown that the drying shrinkage of recycled aggregate concrete (RAC) is greater than that of natural aggregate concrete (NAC). Drying shrinkage is the fundamental reason for the cracking of concrete, and tensile creep caused by the restraint of drying shrinkage plays a significant role in the cracking because it can relieve the tensile stress and results in the delay of cracking occurrence. However, up till now, all research has been focusing on the compressive creep of RAC. Therefore, in this study, a uniaxial restrained shrinkage cracking test was executed to investigate the tensile creep properties caused by the restraint of drying shrinkage of RAC. The mechanical properties, such as compressive strength, tensile splitting strength, and Young's modulus of RAC were also investigated in this study. The results confirmed that the tensile creep of RAC caused by the restraint of shrinkage was about 20-30 % larger than that of NAC.

Effect of Hydration Heat Evolution on Autogenous Shrinkage of High Strength Concrete (초기수화발열이 고강도콘크리트의 자기수축특성에 미치는 영향)

  • 정해문;도변박지;하야도륭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.95-100
    • /
    • 2003
  • The shrinkage of high strength/high performance concrete is very important property for the good working of a structure since it very often generates early age cracking due to thermal and autogenous shrinkage. Autogenous shrinkage occurs as a result of internal moisture depletion due to hydration and temperature-induced effects. The level of autogenous shrinkage occurring due to hydration also depends on temperature history at very early age. It is necessary that effect of temperature on autogenous shrinkage is investigated since the stress generated due to autogenous shrinkage is quantified. In this study, Effect of hydration heat evolution on autogenous shrinkage of high strength concretes with W/C=25-40% was investigated.

  • PDF

A Study On the Chemical shrinkage and Autogenous Shrinkage of High strength Concrete (고강도 콘크리트의 수화수축과 자기수축의 실험연구)

  • Heo, Woo-Young;Kim, Wha-Jung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.2
    • /
    • pp.81-88
    • /
    • 2004
  • The purpose of this study is to investigate the chemical shrinkage and autogenous shrinkage of high strength cement paste and silica fume and fly ash and sand to cement ratio by the method of volumetric tests, and also investigate the autogenous shrinkage of high measurement method, and compare the results of volumetric test and linear length measurement test. A series of cement paste which have W/C ratio of 25%, 35%, 45% respectively were planed to study the effect of the W/C ratio to the shrinkages, and a series of cement paste which were replaced the cement by the silica fume and fly ash with 5%, 10%, 15% as the mass of cement respectively were planed to investigate the effects of poazolana to the shrinkages. A series of mortar which have a C/S ratio of 1:1, 1:1.5, 1:2 respectively were planed to investigate the shrinkage resistant effect of aggregate.