• Title/Summary/Keyword: Shredded material

Search Result 21, Processing Time 0.023 seconds

Combustion and Mechanical Properties of Fire Retardant Treated Waste Paper-Waste Acrylic Raw Fiber Composite Board

  • Eom, Young Geun;Yang, Han-Seung;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.1-10
    • /
    • 2003
  • Shredded waste newspapers, waste acrylic raw fibers, and urea-formaldehyde (UF) adhesives, at 10% by weight on raw material, were used to produce recycled waste paper-waste acrylic raw fiber composite boards in laboratory scale experiments. The physical and mechanical properties of fire retardant treated recycled waste paper-waste acrylic raw fiber composite boards were examined to investigate the possibility of using the composites as internal finishing materials with specific gravities of 0.8 and 1.0, containing 5, 10, 20, and 30(wt.%) of waste acrylic raw fiber and 10, 15, 20, and 25(wt.%) of fire retardant (inorganic chemical, FR-7®) using the fabricating method used by commercial fiberboard manufacturers. The bending modulus of rupture increased as board density increased, decreased as waste acrylic raw fiber content increased, and also decreased as the fire retardant content increased. Mechanical properties were a little inferior to medium density fiberboard (MDF) or hardboard (HB), but significantly superior to gypsum board (GB) and insulation board (IB). The incombustibility of the fire retardant treated composite board increased on increasing the fire retardant content. The study shows that there is a possibility that composites made of recycled waste paper and waste acrylic raw fiber can be use as fire retardant internal finishing materials.

Development of Organic Fertilizer based on the Cow Dung -II. Studies on Rapid Fermentation (우분(牛糞)의 유기질비료화(有機質肥料化) 연구(硏究) -II. 속성부숙방법(速成腐熟方法))

  • Lim, Dong-Kyu;Moon, Yoon-Ho;Shin, Jae-Sung;Woo, Ki-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.3
    • /
    • pp.192-199
    • /
    • 1991
  • To manufacture a good organic fertilizer through rapid composting process, cow dung was mixed with bulking materials such as rice straws, shredded bark, wood chips, and saw dust. The mixing ratio of the cow dung and bulking material was two to one on volume basis and moisture content was adjusted to 60 to 70 percent, C/N ratio 25 to 30 and aeration forced with suction during the aerated pile fermentation. Aerated pile was established outdoors and curing pile was in vinylhouse and the experiment was conducted for 3 years from '88 to '90. After pilling, temperature in aerated pile was reached to the maximum level at 7 to 9 days and the temperatures of cow dung + shredded bark, cow dung + wood chips, and cow dung + rice straws were higher than that of cow dung, and cow dung + saw dust. Total carbon, and C/N ratio in aerated pile fermentation period were increased in the middle stage and then they were decreased with the process of days, and nutrient contents in curing pile period had the same tendency as in the aerated pile.

  • PDF

A Study of Frangibility of 9MM Bullet Related to Material Composition and Sinter Condition (합금 조성 및 소결 조건에 따른 9MM 탄자의 파쇄성에 관한 연구)

  • Kim, Bo-Ram;Seo, Jung-Hwa;Jung, Hee-Chur;Kim, Kyu-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.615-622
    • /
    • 2020
  • Frangible bullets, which are shredded after impact on a target, reduce the possibility of both ricochet and unexpected injury in shooting training and in mission acts in dams, nuclear power plants, and cultural properties. Reducing the levels of hazardous materials in shooting ranges, such as lead, has become an important agenda for the government and environmental groups. In this study, the shape of a frangible bullet was designed for efficient shredding, and the safety and reliability were confirmed by actual firing under different process conditions. In addition, the physical characteristics, such as compaction pressure, density, and frangibility of each process, were compared by analyzing the microstructure of the sintered frangible bullet. The experiment revealed the smallest fragmentation after impact on the target under the following conditions: Cu-Sn 85:15; sintering temperature, 600℃; sintering time, one hour. Further development of the process conditions and experimental methods will contribute to the performance and environmental improvement of a frangible bullet.

Development of Ceramic Body using Waste Celadon (청자 파도자기를 활용한 도자기 소지 개발)

  • Lee, Jea-Il;Park, Joo-Seok;Lee, Yong-Seok;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.602-608
    • /
    • 2009
  • The yield is increasing as the manufacturing technology of ceramics progresses, however, there are many ceramics of poor quality due to variables upon producing ceramics. Some of those waste ceramics are recycled by sanitary ware or tile manufacturers, but most of them are filled in making environmental problem. Therefore, a research begins to recycle waste ceramic ware as alternative to some imported ceramic ware materials and to reduce environmental pollution. This study, succeeding last study which applied waste white ware as ceramic body material, aimed to solve problems of environment and materials by recycling waste ceradon generated in specially formed areas for ceramic in Gyeonggi-do such as Icheon, Yeoju and Gwangju as the ceramic body material. Consequently, the addition of waste ceramic ware into the ceramic body was judged to have limit up to 30% according to plasticity measurement. As we added shredded waste ceramic ware as much as 30% into basic ceramic body and checked its features, the pore rate and absorption rate were good to be average 4% and 3% respectively. In addition, it showed strength more than 720 kgf/$cm^2$ which is higher than existing ceradon body on the market with good sinter state; so it is judged to be available or developed as new ceramic body.

A Study on Replay Experiments and Thermal Analysis for Autoignition Phenomenon of Shredded Waste Tires (폐타이어 분쇄물의 자연발화현상에 대한 재연실험 및 열분석에 관한 연구)

  • Koh, Jae Sun;Jang, Man Joon
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.99-108
    • /
    • 2012
  • These days, spontaneous ignition phenomena by oxidizing heat frequently occur in the circumstances of processing and storing waste tires. Therefore, to examine the phenomena, in this work, this researcher conducted the tests of fires of fragmented waste tires (shredded tire), closely investigated components of the fire residual materials collected in the processing and storing place, and analyzed the temperature of the starting of the ignition, weight loss, and heat of reaction. For the study, this researcher conducted fire tests with fragmented waste tires in the range of 2.5 mm to 15 mm, whose heat could be easily accumulated, and performed heat analysis through DSC and TGA, DTA, DTG, and GC/MS to give scientific probability to the possibility of spontaneous ignition. According to the tests, at the 48-hour storage, rapid increase in temperature ($178^{\circ}C$), Graphite phenomenon, smoking were observed. And the result from the DTA and DTG analysis showed that at $166.15^{\circ}C$, the minimum weight loss occurred. And, the result from the test on the waste tire analysis material 1 (Unburnt) through DSC and TGA analysis revealed that at $180^{\circ}C$ or so, thermal decomposition started. As a result, the starting temperature of ignition was considered to be $160^{\circ}C$ to $180^{\circ}C$. And, at $305^{\circ}C$, 10 % of the initial weight of the material reduced, and at $416.12^{\circ}C$, 50 % of the intial weight of the material decreased. The result from the test on oxidation and self-reaction through GC/MS and DSC analysis presented that oxidized components like 1,3 cyclopentnadiene were detected a lot. But according to the result from the heat analysis test on standard materials and fragmented waste tires, their heat value was lower than the basis value so that self-reaction was not found. Therefore, to prevent spontaneous ignition by oxidizing heat of waste tires, it is necessary to convert the conventional process into Cryogenic Process that has no or few heat accumulation at the time of fragmentation. And the current storing method in which broken and fragmented materials are stored into large burlap bags (500 kg) should be changed to the method in which they are stored into small burlap bags in order to prevent heat accumulation.

Strength properties of composite clay balls containing additives from industry wastes as new filter media in water treatment

  • Rajapakse, J.P.;Gallage, C.;Dareeju, B.;Madabhushi, G.;Fenner, R.
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.859-872
    • /
    • 2015
  • Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to $1100^{\circ}C$ at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.

Evaluation of TDF ash as a Mineral Filler in Asphalt Concrete (TDF ash를 채움재로 사용한 아스팔트 콘크리트 물성 평가)

  • Choi, MinJu;Lee, JaeJun;Kim, HyeokJung
    • International Journal of Highway Engineering
    • /
    • v.18 no.4
    • /
    • pp.29-35
    • /
    • 2016
  • PURPOSES : The new waste management policy of South Korea encourages the recycling of waste materials. One material being recycled currently is tire-derived fuel (TDF) ash. TDF is composed of shredded scrap tires and is used as fuel in power plants and industrials plants, resulting in TDF ash, which has a chemical composition similar to that of the fly ash produced from coal. The purpose of this study was to evaluate the properties of an asphalt concrete mix that used TDF ash as the mineral filler. METHODS : The properties of the asphalt concrete were evaluated for different mineral filler types and contents using various measurement techniques. The fundamental physical properties of the asphalt concrete specimens such as their gradation and antistripping characteristics were measured in accordance with the KS F 3501 standard. The Marshall stability test was performed to measure the maximum load that could be supported by the specimens. The wheel tracking test was used to evaluate the rutting resistance. To investigate the moisture susceptibility of the specimens, dynamic immersion and tensile strength ratio (TSR) measurements were performed. RESULTS : The test results showed that the asphalt concrete containing TDF ash satisfied all the criteria listed in the Guide for Production and Construction of Asphalt Mixtures (Ministry of Land, Infrastructure and Transport, South Korea). In addition, TDF ash exhibited better performance than that of portland cement. The Marshall stability of the asphalt concrete with TDF ash was higher than 7500 N. Further, its dynamic stability was also higher than that listed in the guide. The results of the dynamic water immersion and the TSR showed that TDF ash shows better moisture resistance than does portland cement. CONCLUSIONS : TDF ash can be effectively recycled by being used as a mineral filler in asphalt, as it exhibits desirable physical properties. The optimal TDF ash content in asphalt concrete based on this study was determined to be 5%. In future works, the research team will compare the characteristics of asphalt concrete as function of the mineral filler types.

Pilot Scale Anaerobic Digestion of Korean Food Waste (파일로트 규모 음식쓰레기 2상 혐기소화 처리공정에 관한 연구)

  • Lee, J.P.;Lee, J.S.;Park, S.C.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.197-203
    • /
    • 1998
  • A 5 ton/day pilot scale two-phase anaerobic digester was constructed and tasted to treat Korean food wastes in Anyang city. The process was developed based on 3 years of lab-scale experimental results on am optimim treatment method for the recovery of biogas and humus. Problems related to food waste are ever Increasing quantity among municipal solid wastes(MSW) and high moisture and salt contents. Thus our food waste produces large amounts of leachate and bed odor in landfill sites which are being exhausted. The easily degradable presorted food waste was efficiently treated in the two-phase anaerobic digestion process. The waste contained in plastic bags was shredded and then screened for the removal of inert material such as fabrics and plastics, and subsequently put into the two-stage reactors. Heavy and light inerts such as bones, shells, spoons and plastic pieces were again removed by gravity differences. The residual organic component was effectively hydrolyzed and acidified in the first reactor with 5 days space time at pH of about 6.5. The second, methanization reactor part of which is filled with anaerobic fillters, converted the acids into methane with pH between 7.4 to 7.8. The space time for the second reactor was 15 days. The effluent from the second reactor was recycled to the first reactor to provide alkalinities. The process showed stable steady state operation with the maximum organic rate of 7.9 $kgVS/m^3day$ and the volatile solid reduction efficiency of about 70%. The total of 3.6 tons presorted MSW containing 2.9 tons of food organic was treated to produce about $230m^3$ of biogas with 70% of methane and 80kg humus. This process is extended to full scale treating 15 tons of food waste a day in Euiwang city and the produced biogas is utilized for the heating/cooling of adjacent buildings.

  • PDF

An Assessment on the Behavior of Nitrogenous Materials during the First High-rate Phase in Composting Process (퇴비화 공정의 1차 발효단계에서 질소성 물질의 거동 평가)

  • Jeong, Yeon-Koo;Kim, Jin-Soo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.3
    • /
    • pp.81-88
    • /
    • 2000
  • Composting of N-rich wastes such as food waste and wastewater sludges can be associated loss of with substantial gaseous N, which means loss of an essential plant nutrient but may also lead to environmental pollution. We investigated the behavior of nitrogenous materials during the first high-rate phase in composting of food waste. Air dried food waste was mixed with shredded waste paper or wood chip and reacted in a bench scale composting reactor. Samples were analyzed for pH, ammonia, oxidized nitrogen and organic nitrogen. The volatilized ammonia nitrogen was also analyzed using sulfuric acid as an absorbent solution. Initial progress of composting reaction greatly influenced the ammonification of organic nitrogen. A well-balanced composting reaction with an addition of active compost as an inoculum resulted in the promoted mineralization of organic nitrogen and volatilization of ammonia. The prolongation of initial low pH period delayed the production of ammonia. It was also found that nitrogen loss was highly dependent on the air flow supplied. With an increase in input air flow, the loss of nitrogen as an ammonia also increased, resulted in substantial reduction of ammonia content in compost. The conversion ratio of initial nitrogen into ammonia was in the range of 28 to 38% and about 77~94% of the ammonia produced was escaped as a gas. Material balance on the nitrogenous materials was demonstrated to provide an information of importance on the behavior of nitrogen in composting reaction.

  • PDF

Development of Bag Rupturing Device with Octagonal Rotating Blade Drums for MSWs (생활계(生活系) 폐기물(廢棄物) 봉투(封套) 파봉을 위한 회전(回傳)칼날팔각(八角)드럼식(式) 파봉장치(裝置) 개발(開發)에 관(關)한 연구(硏究))

  • Lee, Byung-Sun;Na, Kyung-Duk;Han, Sang-Kuk;Choi, Woo-Zin;Park, Eun-Kyu;Kim, Dong-Ho
    • Resources Recycling
    • /
    • v.18 no.5
    • /
    • pp.63-71
    • /
    • 2009
  • Recyclable wastes coming into material recovery facilities(MRFs) is mostly packed by plastic bag or sack bag. Bag rupturing device is essential to improve capacity and efficiency of MRFs. Bag opening works of MRFs is mostly done by numerous workers and shredder-type bag rupturing device. It often makes a problems; decreased capacity, shredded recyclables, worker safety by explosion and broken glasses, etc. In the present work, bag rupturing device with octagonal rotating blade drums has been developed to solve the existing problems and environment assessment is also performed during operation of the device. Capacity of the device was about 5.6 ton/hr at 8.2 rpm of drum revolution speed and 1.25 m/min of belt conveyor speed. It satisfied initial designed capacity(5.0 ton/hr) and max. capacity 8.8 ton/hr was achieved at 12.5 rpm of drum revolution speed and 1.50m/min of belt conveyor speed. Bag rupturing efficiencies on outer and inner bag were obtained at 100% and about 95.6% as average, respectively and original form of glass bottles in the bag was maintained without broken by about 96.5%. This result shows that the safety in hand sorting by the workers could be improved. As result of environmental assessment on the noise, vibration and particulates, the measured levels on noise, vibration and particulates show the below standard regulatory limits. It could be concluded that the problems of existing devices in MRFs could be solved by adopting the bag rupturing device with octagonal rotating blade drums in on-site operation.